Structural and Magnetic Phase Transitions near Optimal Superconductivity in BaFe$_2$(As$_{1-x}$P$_x$)$_2$

Phys. Rev. Lett. **114**, 157002 — Published 17 April 2015

DOI: [10.1103/PhysRevLett.114.157002](https://doi.org/10.1103/PhysRevLett.114.157002)
Structural and magnetic phase transitions near optimal superconductivity in BaFe$_2$(As$_{1-x}$P$_x$)$_2$

Ding Hu,1 Xingye Lu,1 Wenliang Zhang,1 Huiqian Luo,1 Shiliang Li,1,2 Peipei Wang,1 Genfu Chen,1,* Fei Han,3 Shree R. Banjara,4,5 A. Sapkota,4,5 A. Kreyssig,4,5 A. I. Goldman,4,5 Z. Yamani,6 Christof Niedermayer,7 Markos Skoulatos,7 Robert Georgii,8 T. Keller,9,10 Pengshuai Wang,11 Weiqiang Yu,11 and Pengcheng Dai12,1,†

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Collaborative Innovation Center of Quantum Matter, Beijing, China
3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Ames Laboratory, US DOE, Ames, IA, 50011, USA
5Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
6Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario, K0J 1P0 Canada
7Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
8Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching, Germany
9Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
10Max Planck Society Outstation at the Forschungszentrum Jülich, Heinz Maier-Leibnitz (MLZ), D-85747 Garching, Germany
11Department of Physics, Renmin University of China, Beijing 100872, China
12Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

(Dated: March 23, 2015)

We use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$. Previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at $x = 0.3$. However, we show that the tetragonal-to-orthorhombic structural (T_s) and paramagnetic to antiferromagnetic (AF, P_N) transitions in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ are always coupled and approach to $T_s \approx T_N$ for $x = 0.29$ before vanishing abruptly for $x \geq 0.3$. These results suggest that AF order in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.

PACS numbers: 74.70.Xa, 75.30.Gw, 78.70.Nx

A determination of the structural and magnetic phase diagrams in different classes of iron pnictide superconductors will form the basis from which a microscopic theory of superconductivity can be established [1–5]. The parent compound of iron pnictide superconductors such as BaFe$_2$As$_2$ exhibits a tetragonal-to-orthorhombic structural transition at temperature T_s and then orders antiferromagnetically below T_N with a collinear antiferromagnetic (AF) structure [Fig. 1(a)] [3, 4]. Upon hole-doping via partially replacing Ba by K or Na [6, 7], the structural and magnetic phase transition temperatures in Ba$_{1-x}$A$_x$Fe$_2$As$_2$ ($A = K, Na$) decreases simultaneously with increasing x and form a small pocket of a magnetic tetragonal phase with the c-axis aligned moment before disappearing abruptly near optimal superconductivity [8–11]. For electron-doped Ba(Fe$_{1−x}$T$_x$)$_2$As$_2$ ($T =$Co,Ni), transport [12, 13], muon spin relaxation (μSR) [14], nuclear magnetic resonance (NMR) [15–17], x-ray and neutron scattering experiments [18–23] have revealed that the structural and magnetic phase transition temperatures decrease and separate with increasing x [18–23]. However, instead of a gradual suppression to zero temperature near optimal superconductivity as expected for a magnetic quantum critical point (QCP) [15, 16], the AF order for Ba(Fe$_{1−x}$T$_x$)$_2$As$_2$ near optimal superconductivity actually occurs around 30 K ($＞T_s$) and forms a short-range incommensurate magnetic phase which competes with superconductivity and disappears in the weakly first order fashion, thus avoiding the expected magnetic QCP [20–23].

Although a QCP may be avoided in electron-doped Ba(Fe$_{1−x}$T$_x$)$_2$As$_2$ due to disorder and impurity scattering in the FeAs plane induced by Co and Ni substitution, phosphorus-doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$ provides an alternative system to achieve a QCP since substitution of As by the isovalent P suppresses the static AF order and provides an alternative to antiferromagnetic (P_N) transitions in BaFe$_2$(As$_{1-x}$P$_x$)$_2$, which competes with superconductivity and disappears in the weakly first order fashion, thus avoiding the expected magnetic QCP [20–23].
the structural and magnetic phase transitions at all studied P-doping levels are first order and occur simultaneously within the sensitivity of the measurements (~0.5 K), thus casting doubt on the presence of a QCP [34]. While these results are interesting, they were carried out on powder samples, and thus are not sensitive enough to the weak structural/magnetic order to allow a conclusive determination on the nature of the structural and AF phase transitions near optimal superconductivity.

In this Letter, we report systematic transport, NMR, x-ray and neutron scattering studies of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ single crystals focused on determining the P-doping evolution of the structural and magnetic phase transitions near $x = 0.3$. While our data for $x \leq 0.25$ are consistent with the earlier results obtained from powder samples [34], we find that nearly simultaneous structural and magnetic transitions in single crystals of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ occur at $T_s \approx T_N \geq T_c = 29$ K for $x = 0.28$ and 0.29 (near optimal doping) and disappear suddenly at $x \geq 0.3$. While superconductivity dramatically suppresses the static AF order and lattice orthorhombicity below T_c for $x = 0.28$ and 0.29, the collinear static AF order persists in the superconducting state. Our neutron spin echo and NMR measurements on the $x = 0.29$ sample reveal that only part of the sample is magnetically ordered, suggesting its mesoscopic coexistence with superconductivity. Therefore, in spite of reduced impurity scattering, P-doped BaFe$_2$As$_2$ has remarkable similarities in the phase diagram to that of electron-doped Ba(Fe$_{1-x}$T$_x$)$_2$As$_2$ iron pnictides with an avoided QCP.

We have carried out systematic neutron scattering experiments on BaFe$_2$(As$_{1-x}$P$_x$)$_2$ with $x = 0.19, 0.25, 0.28, 0.29, 0.30$, and 0.31 [37] using the C5, RITA-II, and MIRA triple-axis spectrometers at the Canadian Neutron Beam center, Paul Scherrer Institute, and Heinz Maier-Leibnitz Zentrum (MLZ), respectively. We have also carried out neutron resonance spin echo (NRSE) measurements on the $x = 0.29$ sample using...
TRISP triple-axis spectrometer at MLZ [35]. Finally, we have performed high-resolution x-ray diffraction experiments on identical samples at Ames laboratory and Advanced Photon Source, Argonne National Laboratory [36]. Our single crystals were grown using Ba$_2$As$_2$/Ba$_3$P$_3$ self-flux method and the chemical compositions are determined by inductively coupled plasma analysis with 1% accuracy [37]. We define the wave vector Q at (q_x, q_y, q_z) as $(H, K, L) = (q_x a/2\pi, q_y b/2\pi, q_z c/2\pi)$ reciprocal lattice units (r.l.u) using the orthorhombic unit cell suitable for the AF ordered phase of iron pnictides, where $a \approx b \approx 5.6$ Å and $c = 12.9$ Å. Figure 1(b) shows temperature dependence of the resistivity for $x = 0.31$ sample, confirming the high quality of our single crystals [28].

Figure 1(c) summarizes the phase diagram of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ as determined from our experiments. Similar to previous work on powder samples with $x \leq 0.25$ [34], we find that the structural and AF phase transitions for single crystals of $x = 0.19, 0.28$, and 0.29 occur simultaneously within the sensitivity of our measurements (\sim1 K). On approaching optimal superconductivity as $x \to 0.3$, the structural and magnetic phase transition temperatures are suppressed to $T_s \approx T_N \approx 30$ K for $x = 0.28, 0.29$ and then vanish suddenly for $x = 0.3, 0.31$ as shown in the inset of Fig. 1(c). Although superconductivity dramatically suppresses the lattice orthorhombicity and static AF order in $x = 0.28, 0.29$, there are still remnant static AF order at temperatures well below T_s. However, we find no evidence of static AF order and lattice orthorhombicity for $x = 0.3$ and 0.31 at all temperatures. Since our NMR measurements on the $x = 0.29$ sample suggest that the magnetic order takes place in about \sim50% of the volume fraction, the coupled T_s and T_N AF phase in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ becomes a homogeneous superconducting phase in the weakly first order fashion, separated by a phase with coexisting AF clusters and superconductivity [dashed region in Fig. 1(c)].

To establish the phase diagram in Fig. 1(c), we first present neutron scattering data aimed at determining the Neél temperatures of BaFe$_2$(As$_{1-x}$P$_x$)$_2$. Figure 2(a) shows scans along the $[H, 0, 3H]$ direction at different temperatures for the $x = 0.19$ sample. The instrumental resolution limited peak centered at $Q_{AF} = (1, 0, 3)$ disappears at 99 K above T_N [Fig. 2(a)]. Figure 2(b) shows the temperature dependence of the scattering at $Q_{AF} = (1, 0, 3)$, which reveals a rather sudden change at $T_N = 72.5 \pm 1$ K consistent with the first order nature of the magnetic transition [34]. Figure 2(c) plots $[H, 0, 0]$ scans through the (1, 0, 3) Bragg peak showing the temperature differences between 28 K (4 K) and 82 K for the $x = 0.28$ sample. There is a clear resolution-limited peak centered at (1, 0, 3) at 28 K indicative of the static AF order, and the scattering is suppressed but not eliminated at 4 K. Figure 2(d) shows the temperature dependence of the scattering at (1, 0, 3), revealing a continuously increasing magnetic order parameter near T_N and a dramatic suppression of the magnetic intensity below T_c. Figures 2(e) and 2(f) indicate that the magnetic order in the $x = 0.29$ sample behaves similar to that of the $x = 0.28$ crystal without much reduction in T_N. On increasing the doping levels to $x = 0.3$ [36] and 0.31 [Fig. 2(f)], we find no evidence of magnetic order above 2 K. Given that the magnetic order parameters near T_N for the $x = 0.28, 0.29$ samples look remarkably like those of the spin cluster phase in electron-doped Ba(Fe$_{1-x}$Ta)$_2$As$_2$ near optimal superconductivity [22, 23], we have carried out additional neutron scattering measurements on the $x = 0.29$ sample using TRISP, which can operate as a normal thermal triple-axis spectrometer with instrumental energy resolution of $\Delta E \approx 1$ meV and a NRSE triple-axis spectrometer with $\Delta E \approx 1$ μeV [35]. Fig. 2(h) shows the triple-axis mode data which reproduces the results in Fig. 2(f). However, identical measurements using NRSE mode reveals that the magnetic scattering above 30.7 K is quasielastic and the spins of the system freeze below 30.7 K on a time scale of $\tau \sim h/\Delta E \approx 6.6 \times 10^{-10}$ s [23]. This spin freezing temperature is almost identical to those of nearly optimally electron-doped Ba(Fe$_{1-x}$Ta)$_2$As$_2$ [21–23].

Figure 3 summarizes the key results of our x-ray scattering measurements carried out on identical samples as those used for neutron scattering experiments. To facilitate quantitative comparison with the results on Ba(Fe$_{1-x}$Ta)$_2$As$_2$, we define the lattice orthorhombicity $\delta = (a - b)/(a + b)$ [19, 22]. Figure 3(a) shows the temperature dependence of δ for BaFe$_2$(As$_{1-x}$P$_x$)$_2$ with $x = 0.19$, obtained by fitting the two Gaussian peaks in longitudinal scans along the $(8, 0, 0)$ nuclear Bragg peak.
Estimated for the previous neutron scattering results [34, 36]. We also note a first order like jump below $T_N = 28.5$ K. Consistent with the P-doping dependence of M^2 [Fig. 4(b)] and T_N [Fig. 1(c)], we find that T_N approaches to $\sim 3 \times 10^{-4}$ K near optimal superconductivity before vanishing at $x \geq 0.3$.

Summarizing the results in Figs. 2-4, we present the refined phase diagram of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ in Fig. 1(c). While the present phase diagram is mostly consistent with the earlier transport and neutron scattering work on the system at low P-doping levels [30, 34], we have dis-
covered that the magnetic and structural transitions still occur simultaneously above T_c for x approaching optimal superconductivity, and both order parameters vanish at optimal superconductivity with $x = 0.3$. Since our NMR and TRISP measurements for samples near optimal superconductivity suggests spin-glass-like behavior, we conclude that the static AF order in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ disappears in the weakly first order fashion near optimal superconductivity. Therefore, AF order in phosphorus-doped iron pnictides coexists and competes superconductivity near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP. From the phase diagrams of hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ [8–11], it appears that a QCP may be avoided there as well.

We thank Q. Si for helpful discussions. The work at IOP, CAS, is supported by MOST (973 project: 2012CB21400, 2011CBA00110, and 2015CB921302), NSFC (11374011 and 91221303) and CAS (SPRP-B: 2012CB821400, 2011CBA00110, and 2015CB921302), and TRISP measurements for samples near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP. From the phase diagrams of hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ [8–11], it appears that a QCP may be avoided there as well.

We thank Q. Si for helpful discussions. The work at IOP, CAS, is supported by MOST (973 project: 2012CB21400, 2011CBA00110, and 2015CB921302), NSFC (11374011 and 91221303) and CAS (SPRP-B: 2012CB821400, 2011CBA00110, and 2015CB921302), and TRISP measurements for samples near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP. From the phase diagrams of hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ [8–11], it appears that a QCP may be avoided there as well.

We thank Q. Si for helpful discussions. The work at IOP, CAS, is supported by MOST (973 project: 2012CB21400, 2011CBA00110, and 2015CB921302), NSFC (11374011 and 91221303) and CAS (SPRP-B: 2012CB821400, 2011CBA00110, and 2015CB921302), and TRISP measurements for samples near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP. From the phase diagrams of hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ [8–11], it appears that a QCP may be avoided there as well.

We thank Q. Si for helpful discussions. The work at IOP, CAS, is supported by MOST (973 project: 2012CB21400, 2011CBA00110, and 2015CB921302), NSFC (11374011 and 91221303) and CAS (SPRP-B: 2012CB821400, 2011CBA00110, and 2015CB921302), and TRISP measurements for samples near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP. From the phase diagrams of hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ [8–11], it appears that a QCP may be avoided there as well.

We thank Q. Si for helpful discussions. The work at IOP, CAS, is supported by MOST (973 project: 2012CB21400, 2011CBA00110, and 2015CB921302), NSFC (11374011 and 91221303) and CAS (SPRP-B: 2012CB821400, 2011CBA00110, and 2015CB921302), and TRISP measurements for samples near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP. From the phase diagrams of hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ [8–11], it appears that a QCP may be avoided there as well.

We thank Q. Si for helpful discussions. The work at IOP, CAS, is supported by MOST (973 project: 2012CB21400, 2011CBA00110, and 2015CB921302), NSFC (11374011 and 91221303) and CAS (SPRP-B: 2012CB821400, 2011CBA00110, and 2015CB921302), and TRISP measurements for samples near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP. From the phase diagrams of hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ [8–11], it appears that a QCP may be avoided there as well.