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A Fermi liquid with spin-orbit coupling (SOC) is expected to support a new kind of collective
modes: oscillations of magnetization in the absence of the magnetic field. We show that these modes
are damped by the electron-electron interaction even in the limit of an infinitely long wavelength
(q = 0). The linewidth of the collective mode is on the order of ∆̄2/EF , where ∆̄ is a characteristic
spin-orbit energy splitting and EF is the Fermi energy. Such damping is in a stark contrast to
known damping mechanisms of both charge and spin collective modes in the absence of SOC, all of
which disappear at q = 0, and arises because none of the components of total spin is conserved in
the presence of SOC.

Electron systems with spin-orbit coupling (SOC) ex-
hibit rich physics, some of which may have technological
applications;1,2 equally rich is the physics of cold-atom
systems with synthetic SOC.3,4 Combining many-body
interactions with broken SU(2) symmetry, one obtains
a special–“chiral”–kind of Fermi liquid (FL)5–7 that sup-
ports a new type of collective modes, “chiral-spin waves”–
oscillations of the spin density in zero magnetic field.8–11

In the absence of SOC, electron-electron interaction
(eei)12 does not affect certain properties of an electron
system given that some symmetries are preserved. For
example, the conductivity and cyclotron-resonance fre-
quency of a Galilean-invariant system are not affected
by eei; same is true for the de Haas-van Alphen (dHvA)
frequency in an isotropic system13 and for the Larmor
frequency in the presence of an SU(2)-symmetric in-
teraction. Being a relativistic effect, SOC breaks both
Galilean (but not necessarily rotational) invariance and
SU(2) symmetry and thus lifts the protection ensured by
these symmetries. As a result, several physical quan-
tities become dependent on eei, such as the optical
conductivity,16 Drude weight,17 and frequencies of col-
lective spin modes, which play the role of Larmor fre-
quencies in zero magnetic field.8–11

In this Letter, we discuss another fundamentally new
effect induced solely by SOC: intrinsic damping of collec-
tive spin modes in the uniform (q = 0) limit. Interaction-
induced damping of collective modes is not, by itself,
a new effect. For example, plasmons in 3D,20 2D,21

and 1D (Ref. 22) electron systems, the Silin-Leggett
(SL) mode18,19 in a partially spin-polarized FL,23,25 and
magnons in a ferromagnetic FL24,25 are all damped by
interaction processes involving excitations of multiple
particle-hole pairs. (This mechanism is different from
Landau damping which involves only a single particle-
hole pair. Damping by multiple pairs occurs even outside
the single-particle continuum and its effect on absorption
was studied in Refs. 16 and 21 within the Fermi Golden
Rule.) However, Galilean invariance, in the case of charge
modes,26 and conservation of the total spin component
along the field (S3), in the case of spin modes,27 ensure
that this kind of damping vanishes at q = 0. We show

here that this is not the case for electron systems with
SOC.

FIG. 1: Left: Schematics of the Silin-Leggett mode in a par-
tially spin-polarized FL. Right: The chiral-spin modes in a
FL with Rashba spin-orbit coupling. The shaded regions de-
note the particle-hole continua, ∆B is the Larmor frequency,
∆̃B is the quasiparticle Zeeman energy, and ∆min /max is the
lower/upper boundary of the continuum at q = 0.
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FIG. 2: Top: The ladder (RPA) series for the spin suscepti-
bility. The boxed wavy line is the static effective interaction
Ux. Bottom: Diagrams contributing to damping of the collec-
tive modes. The wavy line in diagrams a-e denotes a dynamic
interaction, Veff(P ).

Two-dimensional (2D) electron systems with
momentum-dependent SOC, e.g., of Rashba or Dres-
selhaus types, bear certain similarity to a partially
spin-polarized Fermi gas. The latter has a transverse SL
mode in the spin sector (see Fig. 1, left),18,19 while the
former has three (two transverse and one longitudinal)
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chiral-spin modes (Ω1 . . .Ω3 in Fig. 1, right),8–11 which
correspond to oscillations of the three components of
magnetization. Indices 1 − 3 label the Cartesian system
with the 3 axis along the normal to the plane of a 2D
electron gas. (Although SL-mode has been studied
previously in 3D, the same mode should occur in 2D
as well.) Conservation of S3 ensures that the frequency
of the SL mode at q = 0 coincides with the Larmor
frequency in the absence of eei. In the presence of SOC,
none of the three spin components is conserved. As a
result, one obtains three distinct modes with frequencies
renormalized by eei. In addition, as we show here,
these modes have finite linewidth which, in order of
magnitude, is given by the inverse transport lifetime
of a quasiparticle with energy equal to the spin-orbit
splitting. That the SL mode at q = 0 is not affected by
eei follows already from the exact equations of motion
for magnetization.23 Diagrammatically, this occurs due
to a cancellation between the self-energy and vertex
graphs for the spin susceptibility.23 Such a cancellation,
however, does not occur in the presence of SOC.
The single-particle Hamiltonian of a 2D system with

SOC can be written as (we set ~ = 1)

Hk =

(

k2

2m
− µ

)

σ0 + λ~σ · ~f(~k), (1)

where µ is the chemical potential, σ0 is the 2×2 unit ma-
trix, ~σ is the three-dimensional vector of Pauli matrices,

λ is the SOC constant, and ~f(~k) = −~f(−~k) is a 2D vector

that depends on the details of SOC; e.g., ~f = (k2,−k1, 0)
for linear Rashba SOC. The single-particle Green’s func-
tion is given by

G(K) =
∑

s

Ωs(~k)gs(K), Ωs(~k) =
1

2

[

σ0 + sη̂~k
]

, (2)

where gs(K) = (ik0 − k2

2m − s∆~k
/2 + µ)−1, K ≡ (ik0, ~k),

s = ±1 labels either spin projection or chirality, η̂~k ≡
~σ · ~f/|~f |, and ∆~k

= 2λ|~f | is the spin-orbit splitting which,
in general, depends not only on the magnitude but also

on the direction of ~k. We will be primarily interested in

the case of weak SOC, when ∆~k
≪ EF for any ~k. In

what follows, we will be comparing the Ω3 chiral-spin
mode to the (2D) SL mode, as both modes are trans-
verse to the SOC-induced/Zeeman magnetic field. The
latter can be described by the same Hamiltonian with
~f = (0, 0,∆B/2λ), where ∆B ≡ gµBB, g is the effective

g−factor, µB is the Bohr magneton, and ~B is the mag-
netic field chosen to be along the 3-direction. The orbital
effect of the field is not considered here.
Within the Random Phase Approximation (RPA), the

spin susceptibility tensor is given by the ladder series in
Fig. 2, where the boxed wavy line is a short-range inter-
action, Ux, which mimics the exchange interaction in the
spin channel. As shown in Ref. 11, the frequencies of the
collective modes correspond to the roots of the equation

Det
(

σ0 ⊗ σ0 +
Ux

2 Π0
)

, where the elements of the 4 × 4

spin-charge polarization matrix Π0 are given by

Π0
ij(Q) =

∫

K

Tr [σiG(K)σjG(K +Q)] , (3)

where
∫

K
≡ T

∑

k0

∫

d2k
(2π)2 , i, j ∈ 0, 1, 2, 3, and 0 corre-

sponds to the charge component. At q = 0, all mixed
spin-charge susceptibilities, Π0

0j with j 6= 0, vanish by
charge conservation, while the matrix of spin suscepti-
bilities can always be transformed to a diagonal form.
In general, there are three spin modes, whose frequen-
cies are found from the equations 1 + δjUxΠ

0
ii = 0, with

δ1 = δ2 = 1 and δ3 = 1/2. The Green’s functions in
Π0

ij contain the self-energy parts. However, for the spe-
cial case of Ux =constant, they drop out (see below) and,
after analytic continuation (iq0 → Ω+ iδ), one obtains

Π0
33(Ω) = 2ν

〈

∆2
~kF

(Ω + iδ)2 −∆2
~kF

〉

FS

, (4)

where we have already assumed that SOC is weak in the
sense specified above, ν is the density of states per spin
projection, 〈. . . 〉 denotes averaging over the Fermi surface

(FS), ~kF = kF~k/k, and kF is the Fermi momentum in
the absence of SOC. In general, ∆~k

varies from ∆min

to ∆max along the FS. The continuum of inter-subband
particle-hole excitations, where ImΠ0

33 6= 0, is confined
to the interval ∆min ≤ Ω ≤ ∆max. At the boundaries
of the continuum, ReΠ0

33 has square root singularities,28

which guarantee a solution of the eigenmode equation
1 + UxΠ

0
33/2 = 0 for Ω < ∆min even at weak coupling.

If SOC is isotropic, ∆min = ∆max ≡ ∆, the two square-
root singularities merge into a single pole at Ω = ∆, the
inter-subband continuum shrinks to a single point, and
the mode frequency is given by Ω3 = ∆

√
1− u, where

u ≡ Uxν.
11

Renormalization of the mode frequency by eei in the
SOC case and the lack thereof in the SL case is an impor-
tant difference, which we discuss now as it will help us
to understand the differences in damping later on. This
difference occurs because the Greens’ functions in the
RPA series in Fig. 1 include chirality- or spin-dependent
shifts in the chemical potential, which are given by the
momentum- and frequency-independent parts of the self-
energy. Each rung of the ladder diagram (Π0

ij) contains
a difference of the self-energies

δΣs = Σs − Σ−s = −Ux

∑

s′

∫

P

(Bs,s′ −B−s,s′) gs′(P ),

(5)
where Bs,s′ is the matrix element for the transition
s → s′. Within a given rung, δΣs renormalizes the spin-
splitting perturbation, be it SOC or the magnetic field.
Since s = s′ in the SL case, the self-energy of an electron
with given spin is proportional to the number density of
electrons with the same spin. Hence, δΣs is proportional
to magnetization [δΣs = su∆B/(1−u)], and each rung of
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the diagram contains the renormalized Zeeman energy of
a quasiparticle, ∆̃B = ∆B/(1− u). The boundary of the

continuum at q = 0 is shifted from ∆B to ∆̃B (cf. Fig. 1,
left) as can be seen, e.g., from the 11 component of the

rung: Π0
11(Ω) = −ν

2∆̃2

B

(Ω+iδ)2−˜Delta2

B

. The Larmor theo-

rem is effected via a cancellation between the self-energy
and vertex contributions:23 when the rung is substituted
into the eigenmode equation, the factor of 1 − u cancels
out and the frequency of the mode coincides with bare
∆B.
The SOC case is different in that chirality, in contrast

to spin, is not conserved by eei, and the sum over s′ in
Eq. (5) contains both the s = s′ and s′ = −s terms.
For Ux = const, this implies that the self-energy of an
electron with given chirality is proportional to the total
number density, and thus δΣs = 0.6 The vertex part
is, however, non-zero. Therefore, there is no cancellation
between the self-energy and vertex contributions, and the
frequencies of the modes are renormalized by eei. If Ux 6=
const, one can show29,30 that δΣs does not contain the
zeroth angular harmonic of the interaction (which is why
δΣs = 0 for Ux = const), whereas the vertex contribution
does. Thus, there is no cancellation between the two
contributions in the general case as well.
Damping of collective modes in the region of fre-

quencies and momenta outside the single-particle contin-
uum occurs via generation of multiple particle-hole pairs,
which requires a dynamic interaction, e.g., a dynamically
screened Coulomb potential. The self-energy of collec-
tive modes is depicted diagrammatically in Fig. 2 a-e.
The same set of diagrams has been encountered in the
analysis of various two-particle correlation functions in
the case of an RPA-type interaction.31–34 Although the
Aslamazov-Larkin (AL) diagrams d and e contain two
wavy lines, they are of the same order in the bare cou-
pling constant of the theory (the electron charge in our
case), as diagrams a-c. However, the contribution of the
AL diagrams to damping vanishes within the approxima-
tions made in this work.36,37

In the case of the SL mode, renormalization of the
transverse spin susceptibility (χ⊥ ∼ χ11 + χ22) by dia-
grams a-c is given by δχ⊥(Q) = −µ2

B (Πa +Πb +Πc),
where

Πa =

∫

K

[

g2−(K)g+(K +Q)Σ−(K) +
(

∆~kF
→ −∆~kF

)]

,

Πb =

∫

K

[

g2−(K +Q)g+(K)Σ−(K +Q)

+
(

∆~kF
→ −∆~kF

)]

,

Πc =

∫

K

(

g−(K +Q)g+(K)

iq0 +∆B

[Σ+(K)− Σ−(K +Q)]

+
[

∆~kF
→ −∆~kF

])

, (6)

± denote up/down spins, Q = (iq0, 0), Σ±(K) =
−
∫

P
g±(K + P )Veff(P ), and Veff(P ) is some dynamic in-

teraction. In the last line of Eq. (6), we used the identity

g±(K+P+Q)g∓(K+P ) =
g±(K + P )− g∓(K + P +Q)

iq0 ±∆B

(7)
and integrated over P . Because the denominator in
Eq. (7) does not depend on P , this last step produced the
same self-energies, Σ±, as in diagrams a and b. Adding
up the three lines of Eq. (6), we arrive at

Πa +Πb +Πc =
2∆B

q20 +∆2
B

(A+ −A−), (8)

where A± ≡
∫

K
g2±(K)Σ±(K). Recalling that Veff(P ) is

real on the Matsubara axis and changing the variables as
k0 → −k0 and p0 → −p0, we find that A± = A∗

±. Thus
the frequency-independent prefactor in Eq. (8), A+−A−,
is real. Continuing iq0 to the real axis, we see that the
imaginary part of δχ⊥ comes only from a resonance at the
bare Larmor frequency, Ω = ∆B, which coincides with
the pole of χ⊥ in the RPA approximation. The only effect
of the interaction processes represented by diagrams a-

c is thus to renormalize the amplitude of the SL mode
without either shifting its frequency or smearing it.

For the case of SOC, it is convenient to consider
renormalization of the out-of-plane spin susceptibility,
δχ33(Q) = −µ2

B (Πa +Πb +Πc), where now

Πa =

∫

K

1

2

[

g2−(K)g+(K +Q){Σ+−(K) + Σ−+(K)}+ g2+(K)g−(K +Q){Σ++(K) + Σ−−(K)}
]

,

Πb =

∫

K

1

2

[

g2−(K +Q)g+(K){Σ+−(K +Q) + Σ−+(K +Q)}+ g2+(K +Q)g−(K){Σ++(K +Q) + Σ−−(K +Q)}
]

,

Πc = −
∫

K

∫

P

1

2
Veff(P )

(

N−+M+−−

iq0 +∆~k+~p

+
N+−M+−+

iq0 +∆~k+~p

+
N−+M−++

iq0 −∆~k+~p

+
N+−M−+−

iq0 −∆~k+~p

)

,

Mrts = [gr(K + P )− gt(K + P +Q)]
[

1 + s cos
(

φ~k − φ~k+~p

)]

, Nrt = gr(K)gt(K +Q). (9)
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Here, r, t, s = ± label the spin-split bands, φ~k de-

pends on the azimuthal angle θ~k of ~k (and is equal

to θ~k for linear Rashba SOC),38 and the partial
self-energies are defined as Σrt(K) = −

∫

P
gr(K +

P )Veff(P )
[

1 + t cos(φ~k − φ~k+~p
)
]

, such that the total self-

energies of the Rashba subbands are Σ+ = Σ++ + Σ−−

and Σ− = Σ+− + Σ−+. In the last line of Eq. (9), we
only used the identity (7). In contrast to the SL case,
however, the spin-orbit splittings in the denominators of

Πc depend on ~k+~p, and thus integration over P does not,
in general, produce the self-energies. This already tells
us that, in general, the imaginary part of δχ33 cannot

cancel out between the self-energy and vertex diagrams.

However, there are two realistic approximations,
namely, of a long-range interaction (p ≪ kF ) and of weak
SOC (∆~k

≪ EF ), within which the momentum depen-
dence of ∆~k+~p

can be neglected. Assuming that these

two conditions are satisfied, the vertex part can again be
rewritten in terms of the partial self-energies. Even in
this limit, however, there is no complete cancellation be-
tween the self-energy and vertex diagrams. Namely, we
find that Πa+Πb+Πc can be rewritten as ΠR+ΠD, where

ΠR =
∫

K

∆~kF

q2
0
+∆2

~kF

{

Σ+(K)g2+(K)− Σ−(K)g2−(K)
}

and

ΠD = −
∫

K

∆~kF

q20 +∆2
~kF

{

[Σ−−(K +Q)− Σ+−(K)] g−(K)g+(K +Q)−
(

∆~kF
→ −∆~kF

)}

. (10)

The first term, ΠR, has the same structure as in Eq. (8);
using the same arguments as before, we conclude that
ΠR does not contribute to damping. In contrast, the
second term, ΠD, does have, in general, an imaginary
part at all frequencies, which means damping. To cal-
culate ΠD explicitly, one needs to specify the interac-
tion, which we choose to be in the form of a dynami-
cally screened Coulomb potential. Deferring the compu-
tational details to Sec. IV of the Supplementary Material,
we quote here only the final result for χ33; near the res-
onance at Ω = Ω3,

χ−1
33 (Ω) = (2νµ2

B)
−1A

[

Ω2
3 − (Ω + iΓ/2)2

]

A =

〈

(

∆~kF
ξ~kF

∆2

~kF

−Ω2

3

)2
〉

FS

〈

∆2

~kF

ξ2
~kF

∆2

~kF

−Ω2

3

〉−2

FS

;

Γ =
ω2

C

2EF

(

∆~kF

EF

)2

, (11)

where ω2
C = r2sE

2
F ln r−1

s /12π, rs =
√
2e2/vF is the cou-

pling constant of the Coulomb interaction, and ξ2~kF

is a

dimensionless form-factor which depends on the details
of SOC; for isotropic SOC, ξ2~kF

= 1.

The damping rate Γ has an expected FL form. Notice
though that the quasiparticle damping rate in 2D scales
as Γqp ∝ Ω2 lnΩ, as opposed to just Ω2, with a prefactor
which does not depend on rs.

35 Being a gauge-invariant
quantity, Γ contains the differences of the single-particle
self-energies [see Eq. (10)], while Γqp is related to the
self-energy itself. The infrared singularity in the self-
energy, which gives rise to the lnΩ factor in Γqp, cancels
out in Γ. As a result, Γ is on the order of the transport

decay rate, which is much smaller than Γqp. The FL
nature of the result for Γ indicates that it would not
change substantially if, instead of a FL with Coulomb
interaction, we would consider a FL of neutral particles
with short-range interaction. The only change would be

in ω2
C which, for the case of a contact interaction with

coupling U , should be replaced by ∼ (UνEF )
2.

Since the frequencies of chiral-spin modes are propor-
tional to the spin-orbit splitting, one might be tempted to
conclude that it is better to look for these modes in mate-
rials with strong SOC. Our result in Eq. (11) shows that
the advantage of strong SOC has its limits. Indeed, the
ratio of the linewidth to the mode frequency, γ ≡ Γ̄/∆̄,
scales as C∆̄/EF , where Γ̄ and ∆̄ are the appropriate
angular averages of Γ and ∆~kF

, correspondingly, and C
a dimensionless prefactor. In a material with sufficiently
strong eei, one should expect that C ∼ 1. If, in addi-
tion, SOC is also strong (∆̄ ∼ EF ), then γ ∼ 1 and the
mode is overdamped. We emphasize that this effect is a
unique feature of SOC; in contrast, the SL mode remains
undamped (at q = 0) even if the Zeeman energy becomes
comparable to the Fermi energy.
In a particular model of the screened Coulomb poten-

tial, the effect of damping appears to be rather weak.
For isotropic SOC, Eq. (11) yields C = r2s lnr

−1
s /12π. Us-

ing parameters for an InGaAs/InAlAs quantum well, we
then find γ ≈ 2×10−3∆̄/EF for an electron number den-
sity of 1.6 × 1012 cm−2. On the other hand, chiral-spin
waves are also damped by disorder via the Dyakonov-
Perel’ mechanism.8 For a mobility of 2 × 105 cm2/V· s,
damping due to disorder is stronger than that by eei by
a factor of ten. One should not forget, however, that
Eq. (11) is valid only for rs ≪ 1 and the actual numbers
may differ from quoted above as rs increases. Although
damping from disorder appears to be the dominant effect
in solid-state systems, damping due to interaction should
be dominant in (fermionic) cold-atom systems with syn-
thetic SOC,3,4 which have virtually no disorder. In this
case, the interaction is short-ranged but, as we have al-
ready mentioned, this should only affect the prefactor in
Eq. (11).
In conclusion, we showed that eei in the presence of
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SOC not only gives rise to a new type of collective modes
but also leads to their damping. This damping occurs
even at q = 0 and its rate scales as the square of the spin-
orbit splitting. This effect occurs because neither of the
three components of magnetization is a good quantum
number in the presence of SOC. This prediction should
be important for the experimental studies of such modes
via absorption of electromagnetic waves, as discussed in
Refs. 8,9,11.
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23 S-K. Ma, M. T. Béal-Monod, and D. R. Fredkin, Phys.
Rev. 174, 227 (1968).

24 I. E. Dzyaloshinskii and P. S. Kondratenko, JETP 43, 1036
(1976).

25 V. P. Mineev, Phys. Rev. B 69, 144429 (2004); ibid. 72,
144418 (2005); arXiv:1111.3208 (2012).
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