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Unifying principles that underlie recently discovered transitions between metallic and insulating 

states in elemental solids under pressure are developed. Using group theory arguments and first-

principles calculations, we show that the electronic properties of the phases involved in these 

transitions are controlled by symmetry principles not previously recognized. The valence bands 

in these systems are described by simple and composite band representations constructed from 

localized Wannier functions centered on points unoccupied by atoms, and which are not 

necessarily all symmetrical. The character of the Wannier functions is closely related to the 

degree of s-p(-d) hybridization and reflects multi-center chemical bonding in these insulating 

states. The conditions under which an insulating state is allowed for structures having an integer 

number of atoms per primitive unit cell as well as re-entrant (i.e., metal-insulator-metal) 

transition sequences are detailed, resulting in predictions of novel behavior such as phases 

having three-dimensional Dirac-like points. The general principles developed are tested and 

applied to the alkali and alkaline earth metals, including elements where high-pressure insulating 

phases have been identified or reported (e.g., Li, Na, and Ca).  
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When atoms are brought together, their electronic wave functions overlap and hybridize, 

and one should expect a sudden transition from an insulating to a metal state at some critical 

interatomic spacing. This scenario is the essence of a classic Mott insulator-metal transition 

induced by pressure [1]. It is reasonable to expect, and has long been assumed, that once 

converted into a metal the system will remain in this state upon further compression. In reality, 

however, all the alkali metals and heavy alkaline earth metals (Ca, Sr and Ba), do not follow this 

anticipated behavior; rather they become progressively less conductive on compression, at least 

up to some critical limit over a broad pressure range. Of these metals, Li and Na clearly undergo 

pressure-induced metal-insulator transitions, which may also be called reverse Mott transitions. 

According to direct electrical resistance measurements, Li becomes semiconducting near 80 GPa 

[2], and reverts to a metallic state above 120 GPa [3], while Na enters a wide-gap insulating state 

above 180 GPa becoming transparent to visible light [4]. fcc-Ca is also believed to undergo a 

metal-insulator (semiconductor) transition (at ~19 GPa) before transforming to the metallic bcc 

phase, based on electrical resistivity measurements [5, 6] and subsequent theoretical calculations 

that predict a small band gap (~0.1 eV) at these compressions [7]. Moreover, at ultrahigh 

pressures (34 TPa), it is also predicted that Ni passes through an insulating state [8].  

  High-pressure studies have established that metals can lose electrical conductivity either 

continuously within a given phase or abruptly when undergoing a structural transformation. In 

the “continuous” regime, these changes have been variously attributed to s-p (Li, Na), p-d (Na) 

or s-d (K, Cs, Rb, Ca, Sr, Ba) electronic transitions accompanied by the movement of valence 

electrons from the atoms to interstitial sites in the structure [4, 9-16]. However, there is 

disagreement on the extent and nature of hybridization, how the mixing is related to interstitial 

electronic localization, how such localization is related to the metal-insulator transition, and the 

conditions under which the material returns to a metallic state at higher pressure. The “abrupt” 

drops in conductivity at structural transformations, on the other hand, have been interpreted as 

the result of Peierls distortions [17] or the formation of Hume-Rothery phases in which parts of 

the Fermi surface disappear due to contact with the Brillouin zone  (BZ) boundaries [18]. 

However, these two mechanisms cannot explain (or predict) complete “dielectrization” of the 

electronic spectrum in these metals. Indeed, Peierls distortions in three-dimensional metallic 

systems are capable of opening a gap only over the limited flat patches of the initial Fermi 

surface separated by some (nesting) vector 2kF [19]. As for the Hume-Rothery model, this 
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condition requires the phases to be highly symmetric structures in order for the BZ planes to 

tightly envelop the Fermi surface [20, 21]; on the other hand, the observed high-pressure 

insulating structures (e.g., Li and Na) are significantly anisotropic and not of the Hume-Rothery 

type.  

Here we develop a unified framework for understanding transitions between metallic and 

insulating states of simple metals on compression. Since such metals are only weakly correlated 

systems [22, 23], the problem was treated within a standard one-electron band theory. Using the 

concept of localized Wannier functions (WFs) and group theory arguments, we detail the 

conditions under which insulating states are allowed for structures having an integer number of 

atoms per primitive unit cell. Further, from first-principles calculations on real and model 

systems we demonstrate the connection between orbital mixing, redistribution of electronic 

charge from the nucleus to the periphery, and the opening of the band gap. We show that s-p 

mixing is responsible for opening up a global band gap in simple metals to form an insulating 

state in the systems examined to date. Moreover, the symmetry principles developed here allow 

generalizations that lead to specific predictions for metal-insulator, as well as re-entrant 

insulator-metal transitions, for other systems. The approach demonstrates, for example, that a 

finite band gap in Ca cannot exist in the fcc structure but instead enters a topological 

semimetallic state characterized by three-dimensional Dirac-like points [24]. 

 It is well known that Bloch valence states in systems of non-interacting electrons with a 

band gap can always be described by localized WFs (with finite spread) [25-27]. The number of 

WFs must be equal to the number of occupied valence band branches, J, and at the same time 

equal to the sum ∑i nw
i di, where the index i is used to distinguish between different sets of WFs 

(or band representations [28]), nw
i
 is the multiplicity of a Wyckoff position associated with the 

centers of the WFs belonging to set i, and di is the dimension of an irreducible representation 

(irrep) describing the point symmetry of this position. In non-symmorphic structures, nw
i are 

always  ≥ 2 as are the corresponding numbers of WFs. In the hcp structure, for example, all the 

WFs can be grouped in pairs such that any WF from a pair can be obtained from its counterpart 

by applying a screw axis operation (C2|c/2). It is therefore impossible to isolate a single Bloch 

branch in this case, which would require that all the alkali metals (including hydrogen) in the hcp 
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phase to be (semi)metallic despite the presence of two electrons per primitive unit cell or integer 

band filling, n=1 [29].  

 With two atoms per cell and being non-symmorphic, the diamond structure (space group 

Fd-3m) exhibits behavior similar to the hcp arrangement. The symmetry centers (Wyckoff 

positions) in this structure have at least two vectors in the star [30], which precludes the splitting 

off of a single-sheeted band. As a result, all alkali metals crystallizing in the diamond structure 

would be (semi)metallic, analogous to the system described above. In this context, it is useful to 

consider the Hume-Rothery phase cI16 (I-43d) found experimentally in compressed Li and Na 

[18]. Like the classic γ-brass system, Li-cI16 exhibits a small density of states at EF and low 

reflectivity, and might be expected to transform into an insulator at higher pressures. This 

possibility, however, is symmetrically forbidden because the minimal multiplicity of Wyckoff 

positions in cI16 is 6, and it is impossible to construct a four-branched band accommodating 8 

valence electrons (per primitive unit cell). It should be stressed that even fulfilling the condition 

J = ∑i nw
i di may not be sufficient for the corresponding system to reach an insulating state. This 

is the case of fcc-Ca, as we show below. 

  We now proceed to the insulating phases found experimentally in Li and Na under 

pressure. Insulating Na has a band gap of 1.3 eV near 200 GPa and adopts a double hexagonal 

close packed structure (hP4, space group P63/mmc, see Ref. [22]) with Na atoms occupying 

Wyckoff positions 2a (0,0,0) and 2d (2/3,1/3,1/4)  [4]. The corresponding phase in Li has a 

smaller energy gap (~1 eV at 90 GPa ) and a more complicated, non-centrosymmetric crystal 

structure with space group Aba2 where five nonequivalent Li atoms occupy 8b (x,y,z) sites (40 

and 20 atoms per conventional and primitive unit cells, respectively) [31, 32]. According to Ref. 

[4], the insulating state in hP4-Na arises from localization of valence electrons in the interstitial 

sites enabled by p-d hybridization. This proposal can be examined by replacing the Na atoms in 

the structure with Li and analyzing how the electronic structure changes. We find that hP4-Li 

also has an appreciable band gap at these compressions, despite the fact that the p-d 

hybridization effects are negligible (Fig. 1). Moreover, the valence electrons in hP4-Li localize 

in the interstitial regions, and their distribution is very similar to that in hP4-Na. The maxima 

locate at 2c (1/3,2/3,1/4) Wyckoff positions where the crystal potential is maximal. Such an 
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unusual situation reflects the tendency of electrons to reduce their kinetic energy by occupying 

the more open interstitial regions, as discussed for the classic electride Cs+(15-crown)2e- [33].  

We now show how group theory arguments and WFs can be used to characterize these 

systems. In hP4-Na, the valence band consisting of two branches splits off from the rest of the 

band structure, thereby opening a band gap. The fact that the centers of valence electronic charge 

coincide with the unoccupied 2c (1/3,2/3,1/4) Wyckoff positions means that the valence band 

can be described by the single set of localized WFs centered exactly on that position [28, 34]. 

Since J=2 and nw=2, the dimension of an irrep should be equal to 1. Since the band under 

discussion is bonding in character, we represent it with fully symmetric WFs, and the correct 

one-dimensional irrep is A1� [22]. This assumption can be easily checked by examining the 

Wannier basis (c, A1
which leads to two Bloch states at Г (Г1 (׳

+, and Г4
−) that are invariant with 

respect to all the elements that comprise the point group of the sites 2c. The calculated wave 

functions corresponding to the Г1
+, and Г4

− levels are both completely bonding in the (x,y)-plane 

(Fig. 2). At high isosurfaces (e.g., ~2.5), the bottom valence band wave function Г1
+ (Fig. 2a) 

represents a bonding combination of purely s-like orbitals centered on all the Na atoms. 

Similarly, at high isosurfaces the top valence band wave function Г4
− represents a symmetrical 

combination of s-dz2
 hybrids centered on the Na2 atoms (Figs. 2c; see also Ref. [22]). The d (or 

even f) character of this band can also be found in other k-regions of the BZ. Thus, even though 

the top valence band is mainly of s-p character, it also contains a significant d component 

(~20%) in particular regions of reciprocal space. This is quite natural: the Bloch functions can 

possess any orbital character because they are expressed in terms of WFs and projected on 

spherical harmonics around the atomic sites.  

The situation becomes more interesting and complex for insulating Li. In the Aba2 

structure  Li exhibits three distinct maxima in the electron density in the interstitial region [22]. 

All the maxima are located on 8b sites, but only two of them, M1 and M2, can be viewed as the 

centers of the “pseudoanions” holding roughly 2 electrons [32]. At the same time, the integrated 

density within the M3 attractors gives only 1 electron. Since in a non-spin-polarized system each 

localized WF (when squared and integrated) should give 2 electrons, only the M1 and M2 

maxima can be identified as the centers of such functions, r1 and r2 (r1= M1, r2= M2). At the 

same time two neighboring M3 maxima, M3� and M3��, should be viewed as signatures of 
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one WF centered exactly between them: r3=(M3�+M3��)/2. From this, we can construct a 

band representation describing a ten-branched valence band [22]. In contrast to hP4, the band 

representation in Aba2 is composite [35], and consists of three simple band representations (a, 

A)+ (b, A)+ (b, A). Our calculations show that 10 WFs forming a basis of the representation (a, 

A)+ (b,A)+ (b,A) reproduce the ten-branched band of Aba2-Li perfectly. Moreover, we find that 

the maximally localized WF approach, with (initially) randomly-centered Gaussian functions, 

leads practically to the same centers that identified above using solely information about the 

valence charge distribution in the interstitial regions presented in Ref. [32]. The spread in WFs is 

significant, which explains why the M1, M2 and M3 charge maxima merge into a single super-

basin [32]. The offset in positions of the WFs in Li gives rise to the prediction of a remarkably 

large macroscopic electrical polarization in its high-pressure insulating state [22].  Interestingly, 

in Aba2-Li, in contrast to hP4-Na, the bottom and top valence band wave functions at Г are 

centered in the voids even at high isosurfaces (cf. Figs. 2 and 3).   

Moving to Ca, we find that under pressure the valence charge density in its fcc structure 

is concentrated in the interstitial region as in Li and Na, and forms four-leafed rosettes around 

the nuclei and smooth maxima centered on the octahedral Wyckoff positions (Fig. 4). Despite 

this shift in change, the system does not open up a gap in this structure, in contrast to recent 

claims. We find that the phase cannot be properly described using one set of WFs centered on the 

octahedral positions because the first and second branches touch each other along L-W. In fact, 

there are 24 such isolated points of contact over the whole BZ which gives rise to a series of 

Dirac-like points. These Dirac-like points are not required by symmetry but nevertheless cannot 

be destroyed or broken by infinitesimal changes in the lattice parameter [36]. The physical 

reason is that the state at L just above EF is pure 4p, and moves up with the pressure, whereas the 

same the state at W just below the EF is mainly of 3d character and moves down. Thus, the 

valence and conduction bands between L and W move like a scissors operator to form a series of 

Dirac-like points. We also point out that eliminating the d-component from s-p-d hybridization 

along L-W allows the system to open a gap, as demonstrated by numerical calculations for fcc Ca 

over a range of lattice parameters (i.e., including negative pressures). 

This approach shows that it is the s-p electronic transition that drives these metals into 

insulating states. The interconnection between the s-p electronic transition, development of 
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interstitial charge, and “dielectrization” can be understood from a simple model systems such as 

a one-dimensional crystal of Li and Na. Both analytical tight-binding and explicit numerical 

calculations for this hypothetical system reproduce the essential features of the s-p electronic 

transition in real Li or Na [22]. Notably, we find that there are two types of s-p hybridization that 

are equally important for opening the band gap. The first corresponds to the mixing of s and 

px(py) orbitals at the same lattice sites, as exemplified by hP4-Na. This mixing is the principal 

origin of the dielectrization of the spectrum along the k–directions parallel to the basal plane. 

The second type of hybridization arises from the overlap of s and pz (as well as dz2) orbitals at 

different lattice sites. This type is crucial for forming a band gap at Г. The d contribution to the 

wave function is not necessary for gap opening; as we already have seen the gap still opens in 

passing from Na to Li in the hP4 structure. These insulating phases therefore exhibit multi-center 

s-p (-d) bonding. The WFs associated with such a bonding are centered not at midpoints of the 

lines joining neighboring atoms (as in common covalent crystals such as diamond) but rather in 

the voids separated more or less equally from several atoms. This multi-center bonding is 

directional as in conventional covalent systems but in contrast to that in metals.  

We now compare the approach with previous work. Neaton and Ashcroft [17] first 

explicitly examined the pressure-induced change from s to p character of the bands in Li and the 

pairing distortion in Li. Our results indicate that development of a band gap in Li (as well as 

other alkali metals) is mainly due to strong s-p hybridization, though other types of hybridization 

(s-d, p-d, etc.) can facilitate the opening of a gap. In the case of hP4-Na, we can distinctly see 

that both “vertical” s-pz and “in-plane” s-px (py) hybridizations are equally important. This 

contrasts with the view that the dielectrization process arises from s-pz [14-16] or p-d [4] 

hybridization. The general approach developed here has parallels to the simple high-pressure 

electride model developed by Miao and Hoffmann [37]. In the context of alkali metals, this 

model focuses on the relative position of the s orbital energy with respect to, not to p or d orbital 

energies but instead to the 1s energy associated with the so-called interstitial quasiatom (ISQ), an 

interstitial space that can be occupied by the electrons (i.e., similar to the WFs used here). On the 

other hand, the simple ISQ model does not predict metallic re-entrant behavior as (e.g., Li 

reverting to a metallic state above 120 GPa) in contrast to our approach where it appears 

naturally. In another approach, Degtyareva [18] used Hume-Rothery arguments to explain 

selected transitions in simple metals, such as the transformation to cI16 phase in Li. Though the 
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Hume-Rothery approach rationalizes the formation of a pseudogap at the Fermi level, it cannot 

predict which high-pressure phases are in fact insulating (e.g., cI16 discussed above). Finally, we 

note that the approach developed here has some parallels with generalized-valence-bond models 

for chemical bonding in alkali and noble metals [38]. We also point out that the transitions 

considered here for simple metals principally differ from that predicted at ultrahigh pressures for 

Ni [8] where the band gap closes not as a result of orbital mixing but due to the opposite process 

of the rise in 4s above the 3d . 

In conclusion, use of localized WFs and group theory provides a framework for 

understanding the anomalous transitions between the metallic and insulating states of simple 

elements observed on compression. Insulating states are not automatically allowed for the 

structures having an integer number of atoms per primitive unit cell. The alkali metals, for 

example, cannot be insulating in non-symmorphic structures with a filling of 1, but only with 

integer fillings ≥ 2. In Li and Na, the s-s antibonding states and p-p bonding states overlap to 

open hybridization gaps simultaneously at all BZ faces. At the same time, s-d or s-p-d electronic 

transitions do not lead to an insulating states, as in the case of fcc Ca whose valence energy band 

cannot be represented by a single set of WFs. This conclusion is also supported by the fact that 

the pressure-induced s-d transition in Cs (Cs-IV [39] and Cs-V [15]) does not open up a gap, 

even though it shifts the valence charge density from the nucleus to the interstitial region. High-

pressure insulating states of simple “metals” occupy an intermediate place between metals and 

covalent crystals. The transitions between these states arise from the formation of flat s-p hybrid 

bands (and associated band gaps) near the Fermi level within a pressure window where the 

effective s and p energy levels are close to each other as well to EF, a proximity that facilitates 

the observed re-entrant behavior. [40-43] 
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Figures 

Figure 1. Electronic properties of hP4-Li for lattice parameters a=2.784 Å, c=3.873 Å (90 GPa). 

The parameters are intentionally kept the same as for hP4-Na at 320 GPa. (a) Band structure; the 

size of red circles is proportional to the s character of the Bloch wave functions. (b,c) Valence 

charge density and crystal potential in the (110) plane, respectively. The ions are centered in the 

blue regions. 
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Figure 2. Bottom and top valence band wave functions at Г in hP4-Na at 320 GPa 

(corresponding to Г1
+ and Г4

− energy levels) in the primitive unit cell. (a, b) Isocontours of Г1
+ at 

±2.5 and ±1.1, respectively (yellow for + and light blue for −). (c, d) Same as (a, b) but for Г4
−.  

 

 

 

 
Figure 3. Bottom and top valence band wave functions at Г in Aba2-Li at 80 GPa in the 

primitive unit cell. (a, b) Isocontours of the bottom wave function at ±1.2 and ±1.1, respectively. 

(c, d) Same as (a, b) but for the top wave function at ±1.8 and ±1.2.  
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Figure 4. Electronic properties of fcc Ca at a=4.706 Å and 19.0 GPa. (a) Band structure. (b) 

Valence charge density in the (100) planes passing through the Ca atoms (electrons/Bohr3). 

 

 

 

 

 

 

 

 

 

 

 

 


