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This letter presents a rigorous kinetic theory for relativistic runaway electrons in the near critical
electric field in tokamaks. The theory provides a distribution function of the runaway electrons,
reveals the presence of two different threshold electric fields and describes a mechanism for hysteresis
in the runaway electron avalanche. Two different threshold electric fields characterize a minimal
field required for sustainment of the existing runaway population and a higher field required for
the avalanche onset. The near-threshold regime for runaway electrons determines the time scale of
toroidal current decay during runaway mitigation in tokamaks.

Introduction. — The importance of runaway electron
production in plasma has been recognized more than half
a century ago in a seminal work by Dreicer [1], followed
by enlightening subsequent studies by Gurevich [2]. The
initial non-relativistic results [1, 2] have been generalized
to the relativistic case by Connor and Hastie [3]. Simi-
lar to the previous work, [3] is based entirely on diffusive
(small scattering angle) approximation for Coulomb col-
lisions. The missing large-angle (knock-on) collisions are
known to be weak compared to the small-angle collisions,
but they can cause an avalanche-type growth of the run-
away population, as pointed out in [4] and substantiated
in [5, 6]. In the absence of external magnetic field, the
electric field can accelerate runaway electrons until they
reach the pair-production energy range, but in magneti-
cally confined plasmas the runaway energies are limited,
rather, by synchrotron losses that accompany pitch-angle
scattering. The significance of this mechanism was first
shown in [7] and then emphasized in [8] and [9].

The compelling need to mitigate runaway electrons or
to control their behavior in ITER calls for additional at-
tention to the above mentioned aspects of the runaway
problem: relativistic energies of the runaways, avalanche
mechanism of the runaway production, and the combined
effect of pitch-angle scattering and synchrotron losses on
the runaway distribution function (this effect was omit-
ted in [6]). It is especially important to have an accu-
rate theory for the near-threshold regime that represents
long-term behavior of the runaways and is critical for
the mitigation process. Even very strong initial induc-
tive electric field is reasonably expected to drop down
to the threshold-level values with the growth of the run-
away population. The key questions in that regard are
what is the threshold electric field and what is the growth
rate of the avalanche when the electric field exceeds the
threshold. The threshold electric field must at least
overcome the collisional friction for ultra-relativistic elec-
trons, which means that this field cannot be less than

Ec =
e3ne ln Λ

4πε20m0c2
. (1)

This expression is commonly referred to as the criti-
cal field for runaway avalanche, but there are strong
experimental indications [10, 11] that it actually un-
derestimates the avalanche threshold considerably, and
prior theoretical work [7] partly attributes the difference
to synchrotron losses. However, the simple dynamical
model used in [7] to explain the role of synchrotron losses
is too crude for quantitative predictions. To enable such
predictions, we now present a systematic kinetic treat-
ment of the problem, which not only refines the findings
of [7] but also provides accurate description of the run-
away distribution function, reveals a mechanism for the
hysteresis in the evolution of runaways and explains the
effect of runaways on the current decay process.
Kinetic model. — The rates of the small-angle and

large-angle (avalanche-producing) collisions of runaway
electrons differ by the large Coulomb logarithm Λ. Due
to this difference, the avalanche time-scale is relatively
slow compared to the small-angle collisional processes,
especially at later stage of runaway formation or during
the runaway current mitigation. This separation of time-
scales suggests a two-step approach to the problems of
runaway production and mitigation in the near-threshold
regimes. We first ignore the large-angle collisions and
study the behavior of pre-existing runaways. We then use
the distribution function of the accumulated runaways
to predict their production and loss. To sidestep the
discussion of secondary geometric factors, we consider
the runaways in a uniform fully ionized plasma with a
uniform magnetic field B and constant electric field E
along the magnetic field lines. The distribution function
F satisfies the relativistic Fokker-Planck equation
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where p is the particle momentum (normalized to mc),
θ is the pitch-angle, s is the time variable (normalized

to τ ≡
4πε2

0
m2

0
c3

e4ne ln Λ ), E is the electric field (normalized to

mc
eτ

≡ Ec), and τ̄rad ≡
τrad
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τ
is the normal-

ized time of synchrotron losses. The normalization of the
distribution function is given by

∫

Fdp sin θdθ = 1. In
fully ionized plasmas Z is the ion charge, whereas in cold
post-disruption plasmas with impurities, Z should be ad-
justed to capture the effects of the fast electron scattering
on impurity ions and atomic nuclei. Also, the expression
for τ needs to be generalized to take into account col-
lisions with the bound electrons. These generalizations
have been discussed in [12, 13].
We note that E is an order of unity quantity and τ is

much less than τrad for tokamak parameters we are most
interested in. This allows us to drop the last term on the
right hand side of Eq. (2). We next make a conjecture
(which is internally consistent for the solution we con-
struct, as can be checked directly afterwards) that the
time-scale for pitch-angle equilibration is much shorter
than the momentum evolution time-scale in the near-
threshold case, since the momentum convection terms in
Eq. (2) (acceleration by the electric field and collisional
and radiative drag) are nearly balanced for the electrons
of interest when E is close to the avalanche onset thresh-
old denoted below as Ea. The angular distribution of the
existing runaways can therefore be found from the condi-
tion that pitch-angle scattering balances the pitch-angle
shrinking caused by the electric field, i.e., the lowest or-
der version of (2) is
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which specifies the angular part of the distribution func-
tion, so that

F = G (s; p)
A

2 sinhA
exp [A cos θ] (4)

with

A (p) ≡
2E

(Z + 1)

p2
√

p2 + 1
, (5)

where A
2 sinhA

is the normalization factor for the pitch-
angle distribution and function G (s; p) still needs to be
determined from Eq. (2). In order to find this function,
we integrate Eq. (2) over all pitch-angles, which elimi-
nates the lowest order terms and gives a one-dimensional
kinetic equation for G (s; p):
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FIG. 1. The flow velocity U(p) defined by (7) for Z = 5 and
τ̄rad = 70. The values of the electric field E are: 1.8 for the
solid curve, 1.7 for the dashed curve, and 1.65 for the dotted
curve.

Equation (6) is a continuity equation in the momentum
space with a ”flow velocity” defined by (7) and shown in
Fig. 1 for three different values of the electric field. This
velocity is negative for all momenta if the electric field is
lower than a certain threshold value E0(Z; τ̄rad) (dotted
curve in Fig. 1). In other words, any initially created
population of fast electrons will slow down and join the
bulk if E < E0. In contrast, a higher field (E > E0)
creates a finite interval of positive flow velocities (un-
der the solid curve in Fig. 1), which enables sustainment
of fast electron population in the plasma. In what fol-
lows, E0 is referred to as the sustainment threshold. For
E > E0, the flow velocity vanishes at two equilibrium
points (pmin and pmax), of which the higher momentum
point is stable, and the lower momentum is unstable.
More specifically, the electrons slow down and join the
bulk if their momenta are less than pmin, whereas the
electrons with larger initial momenta (p > pmin) move
towards pmax and accumulate there, so that the entire
population of fast electrons eventually concentrates near
pmax. In particular, the electrons with initial momenta
higher than pmax, if any, decelerate towards pmax. It
is essential that this process is faster than the rate of
large-angle collisions, which simplifies calculation of the
avalanche growth rate significantly.
The function U(p) dictates the applicability condition

for the separation of timescales between the pitch-angle
equilibration and the momentum evolution. The low
value of U(p) (U ≪ p) at pmin < p < pmax ensures
that the momentum evolution is slower than pitch-angle
equilibration. This is not the case for p ≫ pmax and
p ≪ pmin where Eq. (6) becomes inaccurate. However,
such electrons will quickly decelerate toward the region
of validity of the presented solution (if p ≫ pmax) or
merge the bulk plasma (if p ≪ pmin), which enables the
prediction of the sustained distribution function.
Note that the stable point pmax would not exist in

the absence of synchrotron losses, because the stopping
power for ultra-relativistic electrons is nearly constant
(we neglect a week logarithmic rise of the collisional stop-
ping power at high energies). The electrons would then
accelerate constantly in a supercritical electric field. Syn-
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FIG. 2. The contours of the sustainment field E0 (solid
curves) and the avalanche onset field Ea (dashed curves).

chrotron losses introduce a momentum-dependent stop-
ping force, which precludes unlimited acceleration of the
electrons and thereby sets an upper limit on runaway en-
ergies. The sustainment threshold E0 should not be con-
fused with the critical electric field Ec determined solely
by the collisional friction.
The equilibrium points (pmin and pmax) merge when

the electric field equals E0 (the flow velocity function
for this case is shown by the dashed curve in Fig. 1).
This condition serves as a formal definition of E0. Fig-
ure 2 presents the resulting contour plots for E0 on the
(Z; τ̄rad) plane (solid contours). There is also a conve-
nient analytic fit for E0,

E0 ≈ 1 +

(Z+1)√
τ̄rad

6

√

1
8 + (Z+1)2

τ̄rad

(8)

that has better than 5% accuracy for 1 < Z < 30 and
τ̄rad > 5 .
Equation (6) predicts significant peaking of the distri-

bution function near the phase space attractor at pmax

for the electric fields greater than E0 but still in the E0

range. This peaking is also observed in a Monte Carlo
solution of Eq. (2) presented in [12]. A snapshot of the
numerically calculated distribution function in the pro-
cess of contraction is shown in Fig. 3. The difference
between the commonly assumed monotonic distribution
of runaways, obtained in [6], and the peaked distribution
should apparently change the avalanche growth, the like-
lihood of wave excitation by the runaway beam, and the
runaway mitigation assessments.
Avalanche growth rate and the hysteresis effect. —The

kinetic model described above allows straightforward cal-
culation of the avalanche growth rate. Taking into ac-
count relatively fast electron flow to p = pmax, we as-
sume that the relativistic factor for all primary electrons
is γ0 =

√

p2max + 1. Let γ be the relativistic factor of an
electron after collision of the primary electron with an
immobile bulk plasma electron. The differential cross-
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FIG. 3. Snapshot of the runaway electron distribution in mo-
mentum and pitch angle during the decay process. The pitch-
angle parameter is λ ≡ sin2 θ.

section for their collision is [14]
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where re is the classical electron radius.
Recalling the structure of the velocity flow (7), we con-

clude that the after-collision energies of both electrons
need to be greater than γmin ≡

√

p2min + 1 to produce
the avalanche. This ensures that both electrons will flow
to the stable point γ0 after the collision. The energy con-
servation law limits the values of γ for such collisions to
γmin < γ < γ0+1−γmin. The total cross-section for such

events is then σ =
γ0+1−γmin

∫
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dγ, and resulting growth

rate of the avalanche is
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The factor 1/2 in (10) accounts for the fact that each
collision involves two electrons, but only one of them can
be a new member of the runaway population. As seen
from (11), γmin has to be less than (γ0 + 1)/2 to de-
velop an avalanche, so that the avalanche threshold is
determined by the condition γ0+1−2γmin = 0. The cor-
responding threshold value Ea of the inductive electric
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field is greater than E0 (as indicated by dashed contours
in Fig. 2).
If the electric field is lower than Ea, then the growth

rate Γ is negative. The large-angle collisions work against
the avalanche in this case, because the final energies of
the colliding electrons can be less than γmin, which forces
these electrons to move away from the γ0 attractor into
the bulk. However, the resulting decay of the fast elec-
tron population is relatively slow (because of the large
Coulomb logarithm). As a result, the finite interval be-
tween E0 and Ea enables long sustainment of the fast
electrons without their exponential multiplication. This
regime differs significantly from the predictions of the
previous avalanche theory [6]. Another important dif-
ference is that, for the fields greater than E0, the rate
of runaways production is lower than the one predicted
in [6]. The reason for both differences is a simplified de-
scription of the secondary electron source in [6], which as-
sumes extremely high energies of the primary electrons.
The same simplified source was also used in [9]. This
simplification breaks down in the near-threshold regime,
where finite energy of the primary electrons needs to be
accounted for.

Note that rare large-angle collisions of the attractor
runaways with bulk plasma electrons do naturally cre-
ate an accompanying population of lower energy elec-
trons (with p < pmin). This effect was discussed in
Refs. [15, 16] as a candidate for electrical breakdown in
atmosphere. The lower energy electrons are apparent
in tokamak experiments, but their effect on the attrac-
tor particles should be relatively small due to the large
Coulomb logarithm. We therefore omit the discussion of
the lower energy electrons in this letter.

The difference between E0 and Ea creates a hystere-
sis in the runaway behavior. If the electric field grows
starting from E < E0, there will be no runaways at
E = E0, because the avalanche does not start until the
field reaches Ea. On the other hand, when the field de-
creases from E > Ea and there is already a population
of the runaways, the avalanche stops at E = Ea but the
existing runaways can last as long as the field remains
greater than E0.

Figure 4 presents the avalanche growth rate as a func-
tion of the electric field for Z = 5 and τ̄rad = 70. The
solid line is the growth rate determined by equation (11);
the dashed line represents equation (18) from [6]. We
observe that the two results agree when the electric field
is several times greater than the critical filed Ec. This
is consistent with the fact, that the approximate source
used in [6] is sufficiently accurate at high electric fields
when the value of γ0 is very large and the role of syn-
chrotron radiation becomes negligible near the unsta-
ble point pmin. However, at lower electric fields, equa-
tion (18) from [6] overestimates the growth rate signif-
icantly, and it does not describe the decay of the run-
away population, resulting from large angle scattering at
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FIG. 4. Avalanche growth rate predicted by Eq. (11) (solid
curve) in comparison with Eq. (18) from Ref. [6] (dashed curve
) and the growth rate inferred from the dynamical model of
Ref. [7] (dotted curve).

E0 < E < Ea.
Note that the approximations used to solve Eq. (2)

in the near-threshold regime apparently breaks down at
large electric fields, but the avalanche growth rate there
is insensitive to the near-threshold subtleties, which ex-
plains why Fig. 4 shows close agreement between out cal-
culations and prior results at large fields. To be perfectly
accurate, the intermediate range in Fig. 4 should be un-
derstood as a sensible interpolation.
It is instructive to compare our kinetic results with the

predictions of a truncated dynamical model proposed in
Ref. [7]. This model suggests a set of two coupled ODEs
for the average relativistic factor and the pitch-angle pa-
rameter. It involves a simplifying conjecture that one can
capture interesting qualitative trends by first neglecting
all higher moments of the runaway distribution function.
Although the dynamical model of Ref. [7] exhibits forma-
tion of the phase-space attractor and captures the global
pattern of the electron flow in phase space, the value of
the threshold electric field obtained from this model is
not quite accurate, due to the arbitrariness of the trun-
cation procedure. We also find that the dynamical model
(if used for the avalanche growth rate calculation) would
give an overestimated value, as shown in Fig. 4. Our
kinetic approach is free from these weaknesses.
Current decay. — The runaway avalanche threshold is

of primary importance with regard to mitigation of the
runaways. The mitigation process involves dissipation of
the stored magnetic energy, and the time-scale of this
process is typically much longer than the characteristic
growth time of the runaway avalanche. This separation
of time scales means that the inductive electric field must
be close to the threshold value E0 at every flux surface
where runaways are present [18]. In a simplified cylin-
drical geometry, this condition (together with Maxwell
equations) immediately gives the time derivative of the
total current density on every runaway-occupied surface:
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where we now use SI units for all quantities including
E0. We herein ignore the difference between E0 and Ea,
because it is relatively small compared to E0, as seen on
Fig. 2. On every other (runaway-free) flux surface, the
electric field must be lower than E0 and governed by the
bulk plasma conductivity σ. Equation (12) can then be
generalized to
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1

r
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∂r
r
∂

∂r

[

E0 +

(

j

σ
− E0

)

H

(

E0 −
j

σ

)]

(13)
where H is the Heaviside step function. We observe that
the threshold field E0 sets an upper limit for the rate
of magnetic energy dissipation and thereby determines
the shortest possible time for the total current decay. A
rough estimate of this time is

τmin ∼
µ0I

E0
(14)

We also note that this estimate is insensitive to the en-
ergy spectrum of runaway electrons and that the decay
should be linear in time (as seen from Eq. (12)) if the
runaways occupy most of the plasma cross section and
the threshold field does not evolve significantly during
the decay process. The expected decay rate and linear
time-dependence appears to be consistent with what is
usually seen in the mitigation experiments [17] if one al-
lows for additional (vessel) inductance that extends the
decay time.

Summary. — The presented rigorous theory demon-
strates that the electric field for runaway avalanche onset
is higher and the avalanche growth rate is lower than pre-
vious predictions. The new theory predicts peaking of the
runaway distribution function at the phase-space attrac-
tor and the existence of two different threshold fields that
produce a hysteresis in the runaway evolution. These
findings open a possibility for improved interpretation of
the corresponding experiments, including interpretation
of the X-ray and synchrotron emission measurements.

The existence of threshold electric fields for sustainment
and growth of the runaway population explains the time-
evolution of the total toroidal current in the runaway mit-
igation experiments.
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