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We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with

unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as

also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experi-

mentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase

transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as

the irreversible work diverges at the critical point.

PACS numbers: 05.70.Ln, 03.65.-w, 05.70.Jk

Over the last two decades PT -symmetric quantum me-

chanics has established itself as an important area of mod-

ern research. In its original formulation [1] PT -symmetric

quantum mechanics was a rather mathematical theory with

only loose connection to physical reality [2]. However, re-

cent experimental progress has provided a realization of

PT -symmetric systems, which can be understood as sys-

tems with balanced loss and gain [2–6]. In particular, Rüter

et al. observed PT -symmetry in an optical system [7],

which consists of two coupled waveguides with modulated

refraction indexes.

Around the same time of the first description of PT -

symmetric quantum mechanics [1] Jarzynski achieved

a major breakthrough in thermodynamics of small sys-

tems [8]. The Jarzynski equality, 〈exp (−βW )〉 =
exp (−β∆F ), allows to determine the free energy differ-

ence for an isothermal process from an ensemble of non-

equilibrium realizations of the process. Here, β is the in-

verse temperature, W is the non-equilibrium work, and

∆F is the free energy difference. The angular brackets,

〈·〉, denote an average over all possible work values. There-

fore, modern thermodynamics places special interest on the

distribution of work values, P(W ), which has been stud-

ied extensively, for instance, in classical systems [9–12] as

well as for quantum systems [13–22].

It was shown that the classical Jarzynski equality can

be generalized to isolated quantum systems [23, 24], for

which the thermodynamic work is determined by a two-

time energy measurement [25, 26]. In this approach one

commonly considers the following procedure: a quantum

system is prepared in a thermal Gibbs-state; then a projec-

tive energy measurement is performed, before the system

evolves under an externally controlled Hamiltonian, Ht;

the procedure is concluded by a second, projective energy

measurement [27].

The present work addresses the following question:

Does the quantum Jarzynski equality together with the two-

time energy measurements generalize to PT -symmetric

quantum mechanics? We will find that this is, indeed, the

case for systems with unbroken PT -symmetry, whereas

for broken PT -symmetry the Jarzynski equality does not

hold. These findings will then be carefully analyzed and

illustrated for the model describing the optics experiment

by Rüter et al. [7].

We will show that the phase transition between unbroken

and broken regime has a clear signature in the behavior of

the irreversible work, 〈Wirr〉 = 〈W 〉 − ∆F . This is in

analogous to systems exhibiting quantum phase transitions

[28–30]. However, while quantum phase transitions are

thermodynamically allowed, the transition from unbroken

to broken PT -symmetry is thermodynamically inhibited.

Fundamentals of PT -symmetric quantum mechanics.

We start by briefly reviewing the main properties of PT -

symmetric quantum mechanics. Consider a quantum sys-

tem with non-Hermitian, but PT -symmetric Hamiltonian

H , i.e., [PT ,H] = 0. Here, P is the space reflec-

tion (parity) operator, and T is the time-reflection operator

[1, 3, 31, 32],

P xP = −x and P pP = −p
T x T = x, T p T = −p and T iT = −i (1)

where x and p are position and momentum operator, re-

spectively. Since T also changes the sign of the imaginary

unit i, canonical commutation relations such as [x, p] = i~
are invariant under PT . It has been seen [2, 32] that PT -

symmetric Hamiltonians generally exhibit two parametric

regimes: a regime of unbroken PT -symmetry in which all

eigenvalues of H are real, and a regime of broken PT -

symmetry for which the eigenvalue spectrum has real and

complex parts.

The major difference between Hermitian and PT -

symmetric quantum mechanics is the definition of the inner

product [31, 32]. For Hermitian Hamiltonians we have,

〈ψ1|ψ2〉 = ψ†
1 · ψ2 , (2)

where, as usual, † denotes conjugate transpose. This in-

ner product, however, yields indefinite norms for the non-

Hermitian, but PT -symmetric case [1, 3, 31, 32]. This can

easily be seen explicitly, for instance, for the system dis-

cussed in the second part of our analysis. Therefore, the

inner product in PT -symmetric quantum mechanics is de-

fined in terms of the metric operator C as [31, 32]

〈ψ1|ψ2〉CPT = (CPT ψ1) · ψ2 . (3)



2

In the unbroken regime C can be determined from [31, 32],

[C,H] = 0 and C2 = I . (4)

It is worth emphasizing that the time evolution induced

by a time-independent Hamiltonian with unbroken PT -

symmetry is unitary, and hence the norm is preserved,

〈ψt|ψt〉CPT = 1 for all t [31, 32].

The metric tensor C reminds us of the charge conjugation

operator from field theory [32]. However, in the present

case C is not necessarily associated with an observable, but

rather defines a physically consistent theory.

Quantum work for unbroken PT -symmetry. In the fol-

lowing, we are interested in processes that are induced by

a time-dependent control parameter λt, with Ht = H(λt).
We start by considering a driving protocol for which Ht =
H(λt) is in the regime of unbroken PT -symmetry at all

times. Note that a time-dependent Hamiltonian Ht also in-

duces a time-dependent metric Ct as can be seen from its

definition (4). It has been recently shown [33] that then the

generalized Schrödinger equation reads,

i~ ∂t |ψt〉 = (Ht +At) |ψ〉 , (5)

where At is a time-dependent gauge field, that is necessary

to preserve normalization under the time-dependent metric

Ct. It is given by,

At = − i~
2
W−1

t ∂tWt , (6)

where Wt is the transpose of the metric Ct, i.e., Wt = CT
t .

Commonly, the thermodynamic work done during a pro-

cess of length τ is determined by a two-time energy mea-

surement [25, 26]: at initial time t = 0 a projective energy

measurement is performed; then the system is allowed to

evolve under the generalized time-dependent Schrödinger

equation (5), before a second projective energy measure-

ment is performed at t = τ . For a single realization of this

protocol the work is given by

W|φm〉→|φn〉 = En(λτ)− Em(λ0) , (7)

where |φm〉 is the initial eigenstate with eigenenergy

Em(λ0) and |φn〉 with En(λτ ) denotes the final state.

The distribution of work values is given by averaging over

an ensemble of realizations of the process, P(W ) =
〈

δ
(

W −W|φm〉→|φn〉

)〉

, which can be written as [20, 34]

P(W ) =
∑

∫

m,n

δ
(

W −W|φm〉→|φn〉

)

p (|φm〉 → |φn〉) .

(8)

In the last equation the symbol
∑

∫

accounts for discrete and

continuous parts of the eigenvalue spectrum. Without loss

of generality we assume here that the spectrum is discrete,

but see also Ref. [20].

In Eq. (8) p (|φm〉 → |φn〉) denotes the probability to

observe a specific transition |φm〉 → |φn〉. This probabil-

ity is given by [20, 34],

p (|m〉 → |n〉) = tr
{

Πn Uτ Πm ρ0 Πm U
†
τ

}

, (9)

where ρ0 is the initial density operator of the system and

Uτ is the unitary time evolution operator,

Uτ = T> exp

(

− i

~

∫ τ

0

dt (Ht +At)

)

. (10)

Here, T> is the time-ordering operator, and Πν denotes the

projector into the space spanned by the νth eigenstate. For

the sake of simplicity we further assume that all spectra

are non-degenerate, for which we simply have Πν = φν ·
(CtPT φν) [35]. Hence, Eq. (9) can be written as,

p (|φm〉 → |φn〉) = (CτPT φn) · (Uτφm)

· (C0PT φm) · (ρ0φm) · (CτPT Uτφm) · φn .
(11)

Now, let us assume that the system under study was ini-

tially prepared in a Gibbs state, namely we have

ρ0φm = [exp (−βEm)/Z0] φm , (12)

where Z0 = tr {exp (−βH0)} is the partition function.

Then, we compute the average exponentiated work,

〈exp (−βW )〉 =
∫

dWP(W ) exp (−βW )

=
∑

m,n

exp (−βEn + βEm) p (|φm〉 → |φn〉) .
(13)

Substituting Eqs. (11) and (12) into Eq. (13) and us-

ing the CPT -normalization of the initial eigenstate φm,

(C0PT φm) · φm = 1, we have

〈exp (−βW )〉 = (1/Z0)
∑

m,n

exp (−βEn)

× (CτPT φn) · (Uτφm) · (CτPT Uτφm) · φn .

(14)

We further employ the CPT -symmetric partition of the

identity, I =
∑

ν ψν · (CtPT ψν), which is invariant under

unitary evolution [32], and the CPT -normalization of the

final eigenstate, φn. Hence, we obtain

〈exp (−βW )〉 = Zτ/Z0 = exp (−β∆F ) , (15)

where F = −1/β ln (Z) is the free energy. In conclusion,

we have shown that the quantum Jarzynski equality (14)

remains valid for quantum systems with unbroken PT -

symmetry, and for which the time-evolution is described

by the generalized Schrödinger equation (5).

Regime of broken PT -symmetry. What remains is to

check, whether Eq. (15) is also valid in the regime of bro-

ken PT -symmetry. Analogous to the unbroken regime the

initial energy eigenstate can always be chosen to be CPT -

normalized. Therefore, the treatment of the broken regime

is identical to the above discussion, if we replace the defi-

nition of C in Eq. (4) by [36]

{C,H} = 0 and C2 = I . (16)

Comparing Eq. (4) with Eq. (16) we observe that in the

regime of unbroken PT -symmetry the metric operator C
commutes with H , whereas in the broken regime the met-

ric operator anticommutes with the Hamiltonian H [37].

In addition, the time-evolution in the broken regime ceases
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FIG. 1. (color online) Irreversible work 〈Wirr〉 (27) for the linear

protocol (26) and α0 = 1/2, that is a system starting in the regime

of unbroken PT -symmetry. Parameters are β = 1, ~ = 1, τ = 1,

and κ = 1. Inset illustrates the validity of the PT -symmetric

Jarzynski equality (15).

to be unitary as the energy spectrum contains a complex

part. Therefore, even when including a gauge field in the

generalized Schrödinger equation (5) to account for time-

dependent metrics (6), norms are not preserved. In particu-

lar, we have
∑

m ψm·(CτPT ψm) 6= I, withψm = Uτφm,

if the time-evolution operator, Uτ , is not at least unital

[34, 38–40]. A unital map is a trace preserving, completely

positive map, under which the identity is preserved, and

that can be written as a superposition of unitary maps [41].

In conclusion, it becomes apparent by inspecting

Eq. (14) that the quantum Jarzynski equality together with

the two-time energy measurement approach does not hold

under broken PT -symmetry.

PT -symmetric Jarzynski equality in optics. The re-

mainder of this discussion is dedicated to a careful analy-

sis and illustration of the above findings for an experimen-

tally relevant example. In a recent experiment Rüter et al.

showed that PT -symmetric quantum mechanics can be re-

alized in optical set-ups [7] – two coupled waveguides, of

which only one is optically pumped. The optical-field dy-

namics is described by [7]

i ∂zE1 =
iγ

2
E1 − κE2 ,

i ∂zE2 = − iγ
2
E2 − κE1 ,

(17)

where E1,2 are the field amplitudes in the waveguides, κ
is the coupling constant, and γ is the gain coefficient due

to the optical pumping. Identifying the spatial coordinate

with a time variable, z = t/~, the dynamics of a PT -

symmetric quantum system is “frozen” in the profile of the

field amplitudes. In particular, we can identify the Hamil-

tonian as,

H(α) = κ

(

i α −1
−1 −i α

)

, (18)

where we introduced the new parameter α = γ/2κ. Note

that this Hamiltonian belongs to the class of two-level sys-

tems discussed extensively in the literature [3, 31, 32].

With the parity operator,

P =

(

0 1
1 0

)

, (19)

and noting that T performs here only complex conjuga-

tion one easily convinces oneself thatH(α) (18) is, indeed,

PT -symmetric. The eigenenergies are given by,

ǫ1,2 = ±κ
√
1− α2 , (20)

from which we conclude the regime of unbroken PT -

symmetry, α ≤ 1, and the broken regime is α > 1.

It is then a simple exercise to determine the eigenstates

and the metric operator C. We obtain in the unbroken

regime for the eigenstates,

|φun
1 〉 = 1

√

2
√
1− α2

(

e−
i

2
arcsin(α)

e
i

2
arcsin(α)

)

,

|φun
2 〉 = 1

√

2
√
1− α2

(

e
i

2
arcsin(α)

−e− i

2
arcsin(α)

)

,

(21)

with which we obtain

Cun =
1√

1− α2

(

−i α 1
1 i α

)

. (22)

Similarly, we have for α > 1 in the broken regime,

∣

∣φbr
1

〉

=
1

√

2
√
α2 − 1

(

e
1

2
arcosh(α)

i e−
1

2
arcosh(α)

)

,

∣

∣φbr
2

〉

=
1

√

2
√
α2 − 1

(

e−
1

2
arcsin(α)

i e
1

2
arcosh(α)

)

,

(23)

and for the metric operator

Cbr =
1√

α2 − 1

(

−i α
α i

)

. (24)

Finally, we assume the system to be driven externally by

varying the parameter αt. This is motivated by the optics

experiment of Ref. [7], where one would change the optical

pumping, i.e., vary the gain coefficient, γ. Such a driving

could be implemented in the set-up [7] by modulating the

refraction index over the length of the waveguide. Projec-

tive measurements could be realized by measureing ampli-

tude and phase of the field at both ends of the waveguides.

For broken as well as for unbroken PT -symmetry the

gauge field At (6) reads,

At = − i~

2 (α2
t − 1)

(

0 −i α̇t

i α̇t 0

)

. (25)

Equations (18)-(25) are all the ingredients necessary to

compute the quantum work distribution (8) explicitly.
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FIG. 2. (color online) Real part (red, solid line) and imaginary

part (purple, dashed line) of the irreversible work 〈Wirr〉 (27) for

the linear protocol (26) and α0 = 3/2, that is a system starting in

the regime of broken PT -symmetry. Parameters are β = 1, ~ =
1, τ = 1, and κ = 1. Inset illustrates the violation of the Jarzynski

equality (15) in real part (blue, solid line) and imaginary part

(green, dashed line).

For the sake of simplicity we further assume that αt is

changed linearly from an initial value α0 to a final value

α1 during time τ ,

αt = α0 + (α1 − α0) t/τ . (26)

In Fig. 1 we plot the irreversible work,

〈Wirr〉 = 〈W 〉 −∆F (27)

as a function of the final value α1 for a system that starts

in the regime of unbroken PT -symmetry – namely α0 =
1/2. We observe that 〈Wirr〉 is always non-negative, as

it should be as an expression of the second law of ther-

modynamics, and that 〈Wirr〉 diverges at the critical point,

α1 = 1. Similar behavior has been observed for quan-

tum phase transitions [42], where the irreversible work

can be interpreted as a quantum susceptibility. Diverging

susceptibilities are a common feature of quantum critical

points [43]. However, in quantum phase transitions the

irreversible work usually exhibits a singularity, i.e., after

passing through the transition 〈Wirr〉 drops back to a finite

value [42, 43]. In the present case 〈Wirr〉 diverges, sig-

nifying a quantum critical point, but stays at infinity even

after passing trough the phase transition. In other words,

the phase transition is thermodynamically “inhibited”, as

the system’s response “freezes out”. The inset illustrates

the validity of the quantum Jarzynski equality for systems

with unbroken PT -symmetry (15)

Figure 2 shows the same quantities, but for a system

starting in the regime of broken PT -symmetry, here α0 =
3/2. The first observation is that 〈Wirr〉 has real and imag-

inary parts. This is no surprise as the quantum work is de-

fined as an average over differences of eigenenergies (7). In

the broken regime, however, the eigenengeries are complex

(20), and thus also 〈Wirr〉 has to be complex. This signi-

fies the failure of the two-time measurement approach to

describe the thermodynamics of systems with broken PT -

symmetry. Nevertheless, we also observe that the abso-

lute value of the irreversible work diverges at the critical

point, α1 = 1, and that also the transition from broken into

unbroken regime is thermodynamically inhibited. Finally,

the inset illustrates the (complex) violation of the quantum

Jarzynski equality, which is in full agreement with the gen-

eral theory above – the quantum Jarsynki equality does not

hold if the dynamics is not unital [34, 38–40].

Concluding remarks. In the present work we have

shown how the quantum Jarzynski equality generalizes

to PT -symmetric quantum mechanics. We have found

that for quantum systems with unbroken symmetry the

Jarzysnki equality holds, while this is not the case in the

broken regime. The crucial requirement is that the dy-

namics is at least unital. Hence, in time-dependent PT -

symmetric quantum mechanics the Schrödinger equation

has to be generalized including a gauge field so that all

norms are preserved during the driving.

These findings have been further analyzed for an ex-

perimentally relevant system. We have illustrated that

the PT -symmetric Jarzynski equality could be experimen-

tally studied in optical set-ups consisting of two coupled

waveguides. In these systems the time-dependent dynam-

ics is frozen in the amplitude profile of the fields. Time-

dependent driving could be implemented by modulation of

the refraction index over the length of the waveguide. For

this system we have found that the phase transition between

the regimes of unbroken and broken PT -symmetry is ther-

modynamically inhibited as the irreversible work diverges

at the critical point – the system’s response “freezes out”.

We emphasize that we chose the optical system due to

its mathematical simplicity. However, all reported findings

are completely general and also apply, for instance, to PT -

symmetric systems in microwave billiards [44], photonic

lattices [45], LRC circuits [46], optical lattices [47], meta-

materials [48], or phonon lasers [49].
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