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We discuss an Ising spin glass where each S = 1/2 spin is coupled antiferromagnetically to three
other spins (3-regular graphs). Inducing quantum fluctuations by a time-dependent transverse
field, we use out-of-equilibrium quantum Monte Carlo simulations to study dynamic scaling at the
quantum glass transition. Comparing the dynamic exponent and other critical exponents with those
of the classical (temperature-driven) transition, we conclude that quantum annealing is less efficient
than classical simulated annealing in bringing the system into the glass phase. Quantum computing
based on the quantum annealing paradigm is therefore inferior to classical simulated annealing for
this class of problems. We also comment on previous simulations where a parameter is changed with
the simulation time, which is very different from the true Hamiltonian dynamics simulated here.
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Simulated annealing (SA), which was first proposed in
the context of spin glasses [1], is one of the most versa-
tile optimization methods [2, 3]. The basic idea of SA is
that a Monte Carlo (MC) simulation with slowly decreas-
ing temperature can explore the energy (cost-function)
landscape of a complex system without getting trapped
in local minimums if the process is sufficiently slow (in
analogy with removal of crystal defects by heating and
annealing). It is natural to ponder the feasibility of sim-
ilar schemes based on slow reduction of quantum fluc-
tuations in quantum annealing (QA) processes. Such
schemes have been explored for some time, theoretically
[4–6] as well as in experiments on frustrated Ising systems
such as LiHoxY1−xF4 [7, 8]. The QA ideas have risen to
particular prominence in the context of quantum com-
putation [9–11], where there are now serious efforts to
implement QA (also called the quantum-adiabatic algo-
rithm) in actual devices [12], currently with ≈ 500 q-bits
in the D-Wave device [13]. It is not yet clear whether true
QA has been realized in these systems, however [14, 15].
Beyond this practical issue, a fundamental question is
whether QA really is more efficient than SA for impor-
tant optimization problems. This question has been ad-
dressed [16, 17] but so far there are few solid conclusions.

We here present a generic way to compare SA and QA,
using scaling theory in combination with a quantum MC
(QMC) algorithm to simulate systems out of equilibrium
with Hamiltonian dynamics in imaginary time [18, 19].
We also show that this is very different from the dynamics
arising when a parameter is changed versus QMC simu-
lation time, as done in recent attempts to model a QA
device [14, 15]. We present results for an essential model
studied in the context of QA; a quantum S = 1/2 spin
model on random 3-regular graphs in which all spins in-
teract antiferromagnetically with three other spins. The
corresponding classical Ising glass has an exactly known
transition temperature and critical exponents [20, 21].
The quantum model includes a transverse field and has

a ground-state glass transition. Recent work has shown
evidence for a continuous transition but the results were
not completely conclusive [22]. Here we demonstrate a
continuous transition by scaling QMC data as a function
of the velocity in the imaginary-time QA scheme. The
exponents governing the critical growth of glass domains
show that the QA is less efficient than the corresponding
SA protocol. Thus, for a large system, a quantum com-
puter based on the QA would not pass through the glass
transition faster than a classical SA process.
Quantum annealing.—Many optimization problems

can be cast in the form of energy minimization of a clas-
sical Ising spin system described by a Hamiltonian

H0 =
N∑

i=1

N∑

j=1

Jijσ
z
i σ

z
j , (σz

i = ±1). (1)

Challenging problems correspond to disordered frus-
trated interactions Jij . In QA, quantum fluctuations of
some form are added, e.g., a uniform transverse field

H1 = h

N∑

i=1

σx
i = h

N∑

i=1

(σ+
i + σ−

i ). (2)

The total Hamiltonian is expressed as

H = sH0 + (1− s)H1, (3)

where s ∈ [0, 1] regulates the quantum fluctuations. The
“driver” H1 can be chosen such that its ground state is
trivial; with Eq. (2) it is the product state |Ψ0(0)〉 =∏

i | ↑i + ↓i〉. By the adiabatic theorem [23, 24], if the
change of s from 0 to 1 is sufficiently slow, the system will
stay in the ground state |Ψ0(s)〉 and in the limit s → 1
one obtains an optimal solution (out of typically a large
number of degenerate ones) of the classical problem.
The critical issue is how slowly s must change for the

solution not to be ruined by excitations. In the 2-level
Landau-Zener problem the time is ∝ ∆−2, where ∆ is



2

the minimum gap between the two states. Generalizing
this to a many-body system with N degrees of freedom,
such as Eq. (3), a quantum phase transition is expected
at some point sc ∈ [0, 1] where the ground state changes
from trivial, in some sense, to complex. If at sc the gap
is ∆N and if s is changed linearly, the required anneal-
ing time grows with N as ∆−p

N [25] (though the claim
p ≥ 2 is inaccurate, as we will discuss below). Then, if
∆N → 0 as a power of 1/N (in a continuous quantum
phase transition) one can solve the problem using QA in
polynomial time in N . For an exponentially vanishing
gap (first-order transition) the time grows exponentially.
Arguments such as these have stimulated interest in

numerically investigating quantum phase transitions in
important quantum information problems. Initial re-
sults for one class of problems indicated a continuous
transition [9, 10], but once results for larger systems be-
came available a first-order transition seemed more likely
[26, 27]. Other problems have been investigated recently
[22] and some of them likely have continuous transitions.
An important issue was neglected above: The nature of

the quantum state and excitations once the critical point
has been passed. While in models based on Eqs. (1)
and (2) the lowest excitations are gapped for s < sc,
the glassy state for s > sc should in general have dense
gapless excitations. Therefore, going through the critical
point is only the first stage of difficulties, and advanc-
ing further on the way to s = 1 may be exponentially
hard even for a power-law closing of the gap at sc [22].
Nevertheless, the initial passage through the transition
is clearly an important step to understand and quantify.
Here we obtain insights and quantitative results based
on scaling properties of the quantum and classical glass
transitions in antiferromagnets on 3-regular graphs.
Non-equilibrium QMC.—One reason for the currently

rather poor general understanding of the efficiency of
QA schemes is the difficulties of studying dynamics of
large quantum many-body systems on classical comput-
ers. Recently QMC simulations realizing Schrödinger
evolution in imaginary time were proposed as a way
to obtain limited but valuable information [18, 19, 28].
Here we use the quasi-adiabatic QMC (QAQMC) method
[19], where |Ψ0(s = 0)〉 is acted upon by a product of
m evolving Hamiltonians Pm,1 = H(sm) · · ·H(s2)H(s1),
where in the simplest (linear quench) case sj = jδs with
δs = sm/m. The normalization 〈Ψ0(0)|P1,mPm,1|Ψ0(0)〉
is written as a sum over all possible strings of the opera-
tors in the terms (1) and (2), and “asymmetric expecta-
tion values” of the form

〈A〉τ =
〈Ψ0(0)|P1,mPm,τ+1APτ,1|Ψ0(0)

〈Ψ0(0)|P1,mPm,1|Ψ0(0)
, (4)

are MC evaluated. The quantity 〈A〉τ approaches the
ground state expectation value 〈A(sτ )〉 when m → ∞
and for finite m it contains the same leading finite-
velocity correction as in imaginary-time Schrödinger dy-

namics with an evolving Hamiltonian H [s(t)], with s =
sc − v(tf − t), t ∈ [ti, tf ], and the velocity v = ds(t)/dt =
aNδs. Here the factor a is known [19] but is irrelevant
for scaling, and we here use a = 1. Since imaginary- and
real-time quenches to critical points share the same dy-
namic exponent z [18], real-time critical scaling behavior
can be extracted using QAQMC. We can also continue
past sc into the glass phase but here our main aim is to
study the dynamic criticality upon approaching sc.
The implementation of the QAQMC method for the

3-regular graphs is a straight-forward generalization of
the method developed for the standard transverse-field
Ising model (TFIM) in Ref. 19. The classical part of the
Hamiltonian is Eq. (1), with any given spin i coupled to
exactly three other spins j, and for these pairs Jij = 1
(antiferromagnetic). The random graphs were generated
using the Steger-Wormald algorithm [29].
The physical quantity of main interest is the Edwards-

Anderson spin-glass order parameter q, which is defined
using two replicas (independent simulations), 1 and 2, of
a given disorder realization of the random couplings;

q =
1

N

N∑

i=1

σz
i (1)σ

z
i (2). (5)

We will analyze 〈q2〉 averaged over thousands of quenches
of systems with different random couplings. As an illus-
tration of dynamic scaling and different types of dynam-
ics we will also study a ferromagnet, Jij = −1 for all
nearest-neighbor pairs (j = i + 1) on a periodic chain.
In this case we calculate the standard magnetization
mz = (1/N)

∑
i σ

z
i and analyze 〈m2

z〉.
Dynamic scaling.—We will analyze data from QAQMC

simulations within the framework of the Kibble-Zurek
(KZ) scaling ansatz [30, 31] and its later generalizations
[32–38]. The key point here is that there is a velocity vKZ

separating adiabatic and non-adiabatic evolution, and for
a system of length L this is given by

vKZ ∝ L−(zr+1/ν) ∝ N−(z′r+1/ν′), (6)

where ν is the equilibrium exponent governing the diver-
gence of the correlation length, z is the dynamic expo-
nent, and we have also introduced exponents normalized
by the dimensionality d; N = Ld, ν′ = νd and z′ = z/d.
The 3-regular graphs have d = ∞ and we will use N for
the size. To convert to unprimed exponents the upper
critical dimension should then be used; d = du.
The existence of a characteristic velocity suggests a

generalized finite-size scaling form for singular quantities
at the critical point. For quantities calculated at the final
time tf when s = sc, and when v ∝ vKZ or lower, the
order parameter takes the form

〈q2〉 ∼ N−2β/ν′

f(vNz′r+1/ν′

), (7)

and we can extract the important exponent combinations
β/ν′ and z′ + 1/ν′ using a data-collapse technique with
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results for different N and v [38]. In all cases discussed
below, the resulting exponents are stable and insensitive
to details of the fitting procedures. We also note that the
scaling form should work only at a continuous transition
and its applicability, thus, supports such a transition.
Hamiltonian versus simulation dynamics.—Before pre-

senting QAQMC results for the 3-regular graphs, let us
comment on the method of changing H as a function of
the simulation time (instead of the imaginary-time evo-
lution that we advocate). This approach is normally con-
sidered with thermal QMC simulations [17, 39] but can
also be implemented for QAQMC. To illustrate this we
use the ferromagnetic d = 1 TFIM. We use a relatively
large number of operators in the operator sequence in
(4), m = 4N2 (sufficient for ground-state convergence at
all s in equilibrium), and keep s the same for all oper-
ators. The simulation starts at s = 0 and s is changed
linearly at velocity v until sc = 1/2 is reached. At this
stage the magnetization is calculated. The procedure is
repeated many times to obtain 〈m2

z〉. The velocity is de-
fined using a time unit of a sweep of either local updates
(a Metropolis procedure where small segments of spins
are flipped) or cluster updates (a generalization of the
Swendsen-Wang, SW, cluster updates [40, 41]) through-
out the system. Using the scaling ansatz (7) for 〈m2

z〉,
we extract the dynamic exponent characterizing the ap-
proach to the critical point with the local and cluster
updates, and compare with the exponent computed with
QAQMC with s is evolving within the operator string
in Eq. (4). In the latter case there is no dependence on
the type of MC updates (but cluster updates give results
with smaller statistical errors for a given simulation time)
and we should detect Hamiltonian dynamics with z = 1.
The scaling analysis for all the cases is presented in

Fig. 1. The static exponents are those of the d = 2
classical Ising model, β = 1/8 and ν = 1, and we use
these to produce scaling plots according to the form (7).
We suspect that the simulation-time dynamics should be
the same as in the classical d = 2 Ising model with local
and SW updates, and therefore test scaling with z = 2.17
and z = 0.30, respectively (as recently computed using
KZ scaling in Ref. 38). The data collapse is very good in
all cases for sufficiently large systems and low velocities.
The lines in the log-log plots have slopes given by

x =
d− 2β/ν

zr + 1/ν
=

1− 2β/ν′

z′r + 1/ν′
, (8)

for vKZ . v ≪ 1 [38]. For v ≈ vKZ there is a cross-over
to equilibrium finite-size scaling, where 〈m2

z〉 ∝ N−2β/ν.
For v of order 1 there is high-velocity cross-over (not
clearly seen in Fig. 1) into a size-independent 〈m2

z〉, gov-
erned by another scaling form [38].
The above results for the dynamic exponents obtained

under different evolution schemes confirm that evolving
a model in simulation time does not access Hamiltonian
dynamics and has little relevance for studying QA. While
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(b) Cluster dynamics (z=0.3)
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(c) Local dynamics (z=2.17)

(a) QAQMC dynamics (z=1)

N

FIG. 1: (Color online) Velocity scaling for linear quenches of
the TFIM: (a) Quantum quench with QAQMC Hamiltonian
dynamics in imaginary time, (b) simulation-time quenches
with Metropolis dynamics, and (c) SW cluster dynamics. The
observed deviations from the common scaling functions are
expected at an N-dependent high velocity [38].

we have here explicitly demonstrated this in the case of
dynamic critical scaling, there is also no reason to expect
the stochastic simulation-time dynamics to be relevant to
quantum evolution in the glass phase. Hence the conclu-
sions on the quantum mechanical nature of the dynamics
of the D-Wave device drawn in Ref. 14 on the basis of
such calculations are questionable (see also Ref. [15]).

QA on 3-regular graphs.—For the classical antiferro-
magnetic 3-regular graphs Tc = −2 ln−1[1− 2/(1 +

√
2)]

and the exponents, including z for SA with local updates,
are also known; β = 1, ν′ = 3, z′ = 2/3 (du = 6) [20, 21].
We have tested the scaling approach on this system and
reproduced Tc and the exponents to within a few per-
cent [42]. Adding the transverse field (2), based on the
quantum cavity method a value sc ≈ 0.37 was found in
Ref. 22, and QMC calculations of excitation gaps were in
good agreement with this estimate. The expected errors
in these calculations are of order several percent.
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FIG. 2: (Color online) Crossing points between Binder cumu-
lants for 3-regular graphs with N and N +64 spins, extracted
using the curves shown in the inset. The results were obtained
in quenches with v ∼ N−α for α = 17/12. The curve in the
main panel is a power-law fit for extrapolating sc.

We have located sc using QAQMC with v ∝ N−α,
where α exceeds the KZ exponent z′+1/ν′ (which is un-
known but later computable for a posteriori verification).
Then 〈q2〉 ∼ N−2β/ν′

at sc because f(x) in Eq. (7) ap-
proaches a constant when x → 0. As illustrated in Fig. 2,
quenching past the estimated sc, we use a curve crossing
analysis of the Binder cumulant, U = (3−〈q4〉/〈q2〉2)/2,
and obtain sc = 0.3565(12). This value agrees well with
the previous results but has smaller uncertainty.

Performing additional quenches to the above deter-
mined sc, we next extract critical exponents. A scal-
ing graph with data for several system sizes is shown in
Fig. 3. Here the exponents are treated as adjustable pa-
rameters for obtaining optimal data collapse. After per-
forming an error propagation analysis we obtain β/ν′ =
0.43± 0.02 and the KZ exponent z′+1/ν′ = 1.34± 0.11.

Interestingly, the exponents, in particular the KZ ex-
ponent, differ from those obtained using Landau theory
[43] and other methods [44] for large-d and fully con-
nected (d = ∞ [45]) Ising models in a transverse field;
β = 1, ν′ = 2 and z′ = 1/4 (du = 8), i.e., β/ν′ = 1/2
and z′ + 1/ν′ = 3/4. In the simplest scenario the 3-
regular graphs should have the same exponents. How-
ever, a QMC calculation for the fully-connected model
in Ref. 46 was also not in complete agreement with the
above values. It was argued that z = 4 (z′ = 1/2 if
du = 8), ν = 1/4 (ν′ = 2), and β ≈ 1, thus β/ν′ ≈ 0.5
and z′ + 1/ν′ = 1. We have also studied this system us-
ing the same methods as discussed above and obtained
z′ + 1/ν′ = 1.33± 0.12 and β/ν′ = 0.47± 0.03, in good
agreement with the values for the 3-regular graphs (and
sc agrees well with Ref. 46). One potential source of dis-
agreement with the large-d analytical calculations is the
presence of logarithmic scaling corrections, not only at
du but also at d = ∞, as mentioned in Ref. 43. However,
we do not see any obvious signs of log corrections and
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FIG. 3: (Color online) Optimized scaling collapse of the or-
der parameter in critical quenches of 3-regular graphs, giving
the exponents listed in the text. The line has slope given in
Eq. (8) and the points above it (which are excluded in the fit-
ting procedure) deviate due to high-velocity cross-overs [38].

the discrepancy in z′+1/ν′ appears larger than might be
expected from logs alone. Our results therefore suggest
other, unknown effects in the quantum spin glass.

Implications for quantum computing.—In the classical
case the KZ exponent is z′+1/ν′ = 1, while in the quan-
tum system z′ + 1/ν′ ≈ 1.3. Thus, by Eq. (6) the adi-
abatic annealing time grows faster with N in QA. Fur-
thermore, since the order parameter scales as N−β/ν′

,
the critical cluster is less dense with QA, i.e., further
from the solution at s = 1. Thus, in both these respects
QA in the problem considered here performs worse than
SA in passing through the critical boundary into the ex-
tended glass phase in the (h, T ) plane. While our results
do not contain any quantitative information on the pro-
cess continuing from sc to s = 1 (where the annealing
time may grow exponentially in N [22]), it is discourag-
ing that the important initial stage of QA in reaching
the glass phase is less efficient than SA. It is known that
QA can, in principle, be made more efficient than SA
for a given problem by changing the quantum term (the
driver) [47, 48]. However, to make fair comparisons, one
should then allow also more complex SA evolution, e.g.,
going beyond just changing T .

It would be interesting to study velocity scaling also
with the D-Wave device [12, 13], not only with complex
frustrated couplings but even in simpler cases such as a
critical ferromagnet. This would give valuable insights
into the annealing process, which in the D-wave device
certainly is influenced by temperature effects [12], in con-
trast to T = 0 coherent quantum dynamics studied here.
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