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Abstract

An undulator is proposed based on the plasma wakefields excited by a laser pulse in a plasma

channel. Generation of the undulator fields is achieved by inducing centroid oscillations of the laser

pulse in the channel. The period of such an undulator is proportional to the Rayleigh length of

the laser pulse and can be sub-millimeter, while preserving high undulator strength. The electron

trajectories in the undulator are examined, expressions for the undulator strength are presented,

and the spontaneous radiation is calculated. Multimode and multicolor laser pulses are considered

for greater tunability of the undulator period and strength.

PACS numbers: 52.38.Kd, 41.60.-m
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Undulator magnets have numerous applications in beam physics, including the produc-

tion of radiation for light source applications and the cooling of particle beams [1]. The

wavelength λ of the radiation produced by an electron undergoing oscillations inside an un-

dulator is λ = λu (1 +K2/2) /2γ2, where λu is the undulator period, γ is the Lorentz factor

of the electron, and K is the undulator strength parameter. Presently, the undulator period

is limited to >1 mm using conventional magnetic undulators [2]. Reducing λu is highly

beneficial as it will decrease the required electron energy for the same specified radiation

wavelength and, hence, decrease the size of the light source. Undulators with periods less

than or on the order of a millimeter, often referred to as micro-undulators, are, therefore,

of great interest. Several micro-undulator ideas have been proposed including electro-static

undulators [3, 4], crystalline undulators [5], RF-based [6], laser-plasma-based [7–9], and op-

tical undulators [10–17]. In this Letter we propose a micro-undulator based on controlling

the transverse forces experienced by an electron beam inside a laser-excited plasma channel.

In this concept, a laser injected into a plasma channel excites plasma waves, with the appro-

priate transverse fields created by laser pulse centroid oscillations in the channel. Together

with recent impressive progress in compact laser-plasma electron accelerators (LPAs) [18],

this new approach may lead to an extremely compact free-electron laser (FEL).

Plasma channels can be used to guide laser pulses with relativistic intensities (i.e.,

I[W/cm2] & 1018/(λL[µm])2, where I and λL are the laser pulse intensity and wavelength,

respectively), and laser guiding in plasma channels is routinely used for efficient electron

acceleration in LPAs [19–22]. Consider a preformed plasma density profile that is assumed

to be parabolic in the direction transverse to the laser propagation

n(r) = n0

[
1 + (∆n/n0)r2/w2

0

]
, (1)

with r the transverse coordinate, n0 the on-axis electron density, and ∆n the channel depth.

For moderate laser intensities, the laser spot size will remain constant during the propagation

in such a channel and will be equal to w0 if the channel depth is equal to ∆n = (πrew
2
0)

−1
,

where re = e2/mc2 is the classical electron radius [18]. If the laser pulse enters the channel

off-axis or under some angle, the laser beam centroid will oscillate as it propagates, with

characteristic oscillation length equal to the Rayleigh range ZR = πw2
0/λL. For P < Pc

and a0 < 1, where P is the laser pulse power, Pc[GW] ' 17(kL/kp)
2 with kL = 2π/λL and

kp =
√

4πren0, and a0 = eAL/mc
2 is the normalized laser vector potential, the laser beam
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FIG. 1. Schematic of the plasma undulator.

centroid oscillates according to [23, 24]

xc(z) = xci cos(z/ZR + ϕ), (2)

where xci is maximum centroid displacement and is ϕ an arbitrary phase. Ponderomotively

driven plasma waves, or wakefields, created inside the plasma channel by a short laser pulse

with matched spot size and oscillating centroid will follow the laser beam centroid provided

kpZR � 1. As will be shown below, this can be used for controlling the transverse fields

of the plasma wave. An electron beam injected in such a plasma undulator will experience

transverse oscillations leading to efficient radiation generation. An illustration of the plasma

undulator is depicted on Fig. 1: A short laser pulse (depicted with red color) is propagating

through the plasma channel and exhibits oscillatory centroid motion due to an initial laser

centroid displacement. Wakefields created in the plasma also follow the oscillatory laser

centroid motion. An electron beam injected behind the laser pulse (depicted by a collection

of points) experiences transverse, thus focusing, fields (lower panel) with periodic structure

set by the laser centroid oscillation. The periodically-changing focusing field serves as an

undulator and the oscillating electrons produce radiation.

We start by deriving the structure of the wakefields excited by the laser pulse undergoing

centroid oscillations inside the plasma channel. We assume that the channel is shallow,

kpw0 > 1. We also assume that the laser vector potential amplitude is small a0 < 1, and

linear plasma theory can be applied (see, e.g., [18] and references therein). We take the laser

pulse profile to be Gaussian in all dimensions (i.e., the laser pulse intensity is proportional

to I ∝ exp [−2r2/w2
0] exp [−2t2/τ 2

L]). The plasma is underdense, such that the laser pulse

travels through the plasma near the speed of light in vacuum c. In the following, the z-axis
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is the laser propagation/channel axis. Using linear plasma theory [18], the potential of the

laser-excited plasma waves can be expressed as

φ(x, ξ) = −a2
0C sin (kpξ) e

−2[(x−xc)2+y2]/w2
0 , (3)

where φ = eΦ/mc2 is the normalized scalar potential, C =
√
π/2(kpτL/4) exp(−k2

pτ
2
L/8) for a

linearly-polarized Gaussian laser pulse (for an optimized laser pulse duration C =
√
π/8e ≈

0.38, and C → 2C for a circularly-polarized laser), ξ = z−ct, and xc is given by Eq. (2). The

electric fields, under the assumptions above, are ~E/E0 = −k−1
p ∇φ, where E0 = mc2kp/e,

and the equation of motion for an electron in the wakefield is d(~p/mc)/d(kpct) = − ~E/E0.

We consider injection of the electron beam at a wake phase such that Ez ' 0. For a single

electron, or ultrashort beam, one can consider injection at cos(kpζ) = 0, where Ez = 0. For

an extended beam one can consider a beam shape and number of electrons that will fully

load the wakefield, i.e., cancel the longitudinal wakefield created by the laser pulse with the

wakefield created by the electron beam. (Beam loading is discussed below.)

Consider |x− xc| � w0, i.e., the amplitudes of both the laser pulse centroid and electron

beam oscillations are small compared to the laser spot size. (Below we discuss the influence

of the exponential term in the wakefields on the radiation spectra.) In this limit, the motion

of an electron with relativistic gamma factor γ0 � 1, injected in the phase where Ez = 0 and

Ex is positive and has the maximum absolute value, is described by a linear harmonically-

driven oscillator equation,

d2x/dz2 + k2
βx = k2

βxci cos (z/ZR + ϕ) , (4)

where

kβ =

(
4a2

0C

γ0w2
0

)1/2

(5)

is the betatron wavenumber. (The equation of motion in the transverse direction orthogonal

to the laser beam centroid motion is d2y/dz2 + k2
βy = 0.) The transverse momentum of the

electron is

px/mc = aβx sin (kβz + ψβ) + au sin (kuz + ϕ) , (6)

where ku = 1/ZR, ψβ is a phase determined by the electron injection relative to the laser
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beam centroid oscillation,

aβx = γ0kβ

∣∣∣∣xm − (kβZR)2xci
1− (kβZR)2

∣∣∣∣ (7)

=
[
(γ0kβx0 + aukβZR cosϕ)2 + (au sinϕ)2]1/2 (8)

is the betatron strength parameter, with xm the maximum transverse displacement of the

electron with respect to the channel axis, x0 = x(z = 0) [Eq. (8) assumes dx(z = 0)/dz = 0],

and

au =
γ0kuk

2
βxci

k2
u − k2

β

(9)

is the undulator strength parameter. The electron is oscillating with two characteristic

spatial periods: the betatron motion (with period 2π/kβ) and the motion induced by the

laser pulse centroid evolution (with period 2πZR). The laser beam centroid oscillations

generate undulator motion with the same period

λu = 2π2w2
0/λL. (10)

For kβZR � 1, or 2πa0

√
C/γ0 � λL/w0, the undulator strength parameters may be ap-

proximated as

au ≈ 4πa2
0Cxci/λL. (11)

The condition kβZR � 1 approximately holds for the parameters considered in this paper.

Note that the undulator strength parameter is independent of the electron transverse posi-

tion. This is in contrast to a simple plasma focusing channel [25], such as that considered by

an ion-channel laser [26]. The achievable undulator strength au, given by Eq. (11), and λu

is shown in Fig. 2 for different laser pulse parameters and initial centroid displacements. An

undulator strength on the order of unity can be achieved for undulators with mm period.

The properties of the radiation produced by a relativistic electron oscillating in undulator

and focusing fields are well-known [1, 2, 27, 28]. Specifically, the n-th harmonic of the

normalized undulator radiation wavenumber is

κn =
nκ

1 + a2
u/2 + a2

β/2 + γ2
0θ

2
, (12)

where κ = k/(2γ2
0ku) and θ is the azimuthal angle, with γ0θ � 1 and a2

β = a2
βx + a2

βy. For

sufficiently high current and beam quality, partially coherent radiation may be generated by

the FEL mechanism [28]. For the FEL instability to grow, beam parameters must be chosen
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FIG. 2. Undulator strength au given by Eq. (11) versus undulator period λu for several values of

laser amplitude, wavelength, and centroid displacement: (a) a0 = 0.28, λL = 1 µm, and xci/w0 =

0.2; (b) a0 = 0.28, λL = 1 µm, and xci/w0 = 0.3; (c) a0 = 0.5, λL = 10 µm, and xci/w0 = 0.4; and

(d) a0 = 0.5, λL = 1 µm, and xci/w0 = 0.2.

such that 〈a2
β〉/2 is less than the FEL parameter. For a matched, symmetric beam on-axis,

the rms betatron strength parameter is, from Eq. (8),

〈a2
β〉 = γ0kβεn + a2

u

[
(kβZR)2 cos2 ϕ+ sin2 ϕ

]
, (13)

where εn is the normalized emittance of the electron beam, and 〈a2
β〉 is minimized for ϕ = 0, π

and kβZR < 1. This plasma undulator configuration is in a strongly focused regime, and for

typical LPA beam parameters [18] with ultra-low emittance [29, 30], the beam transverse

size will be smaller than the radiation mode size.

Consider the radiation produced by an LPA-generated electron beam propagating through

a plasma undulator with the laser-plasma parameters n0 = 1018 cm−3, λL = 1 µm, w0 =

7 µm, a0 = 0.28, and with the laser matched to the plasma channel with centroid oscillation

amplitude xci = 2.5 µm. Consider an electron beam phased such that kpζ = 3π/2 and

ϕ = π, with γ0 = 1000 (unless stated otherwise, the rms energy spread of the electron

beam is assumed to be σγ/γ0 = 1%). For these parameters, λu = 0.97 mm and au = 1.01.

For the radiation calculation, we have assumed that an electron beam is matched to the

focusing forces [25]. Numerical results using vdsr [31] in 2D, with Nu = 30 undulator

periods and εn = 0.1 µm, are summarized in Fig. 3. Figure 3 shows the radiation spectrum

d2Nph/[Ne(γ0θ)d(γ0θ)dκ], where Nph is the number of photons and Ne is the number of beam

electrons, as a function of the normalized wavenumber κ and normalized azimuthal angle γ0θ.

Also shown is the on-axis radiation spectrum (solid white line). The peak of the fundamental

harmonic of the undulator radiation spectrum is located at κ1 = (1+a2
u/2+〈a2

β〉/2)−1 ≈ 0.62.
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FIG. 3. Normalized radiation spectrum generated by a beam with εn = 0.1 µm and σγ/γ0 = 0.01,

in a plasma undulator with au = 1.01 and Nu = 30. Harmonics, Eq. (12), are shown with

white dashed curves. The spectrum for θ = 0 (arb. units) is shown with white solid line. Peaks

corresponding to betatron radiation, fundamental and 3rd harmonics of the undulator radiation

are annotated with white arrows.

The harmonics of the undulator radiation given by Eq. (12) are also shown (white dashed

curves). Only odd harmonics are generated on-axis, whereas both odd and even harmonics

are generated off-axis. The electron beam in the plasma undulator also exhibits betatron

oscillations and the peak of the betatron radiation is located at (ku/kβ)(1+a2
u/2+〈a2

β〉/2)−1 ≈

0.15. The magnitude of betatron radiation is much smaller than the radiation generated

at the undulator frequency (since a2
β � a2

u). Note the appearance in Fig. 3 of additional

emission at the sum frequencies κ1 +mκβ, with m a positive integer.

Figure 4 depicts the on-axis radiation spectrum as a function of normalized frequency κ

for beams with different values of emittance and energy spread, for the plasma undulator

with same parameters as above. Figure 4 shows the on-axis radiation spectrum from an

ideal beam (zero emittance and no energy spread) calculated using vdsr (green curve)

and using standard undulator radiation theory (dashed black curve) [28]. In Fig. 4, the

on-axis radiation spectrum produced by electron beams with εn = 0.1 µm (blue curve)

and εn = 0.025 µm (red curve) are shown. One can see the expected effect of electron

beam divergence; the lower the divergence, the narrower the spectrum. Figure 4 also shows

(magenta curve) the radiation for a beam with εn = 0.1 µm, but with the exponential term

in the wakefield included [cf. Eq. (3)]. The spectrum peak is located at higher frequency

due to the decrease in the undulator strength. Approximately, the strength of the undulator

decreases by a factor of exp(−2x2
ci/w

2
0) due to the decrease of the focusing field amplitude
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FIG. 4. On-axis spectrum showing the fundamental undulator radiation for several emittance

values: εn = 0.1 µm (blue curve), εn = 0.025 µm (red curve), ideal point-like electron beam with

zero emittance and no energy spread [from numerical calculations (green curve) and from theory

(dashed black curve)], and εn = 0.1 µm with exponential term in the wakefield included (magenta

curve). All beams except ideal point-like electron beam case have an energy spread σγ/γ0 = 1%.

off-axis. For the above example, exp(−2x2
ci/w

2
0) ≈ 0.8. The decrease in field strength due

to the exponential term will depend on the particular situation and can be mitigated by

using stronger laser pulses with smaller initial centroid displacements. In the case of the

electron bunch with finite emittance and energy spread, the undulator radiation spectrum

is broadened compared to the case of a single electron resulting from the beam angular

divergence and energy spread.

In our analysis, we have assumed that the electron beam is loaded at the phase where

Ez = 0 and have neglected the effects due to the longitudinal field Ez. This is valid for

the case when longitudinal electron beam size is much smaller than the plasma wavelength

(and sufficiently low beam charge) or when a beam of proper shape cancels the longitudinal

electric field due to beam loading. Regardless of the beam length, beam loading will limit

the amount of charge [32]. The effect of beam loading on the transverse focusing forces

of the wake will be small provided that xci � rbm, where rbm is the transverse size of the

electron beam matched to the wake focusing forces [25]. The effect of the electron beam

dephasing can be mitigated by using appropriate plasma density tapering [33].

Additional control of the plasma undulator parameters can also be achieved using the

beating of multiple laser pulses with different (odd and even) Hermite-Gaussian modes inside

the plasma channel. Plasma wave excitation using multiple laser modes was considered
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in Ref. [34]. Using the same formalism as above, an electron in the wakefield driven by

two linearly-polarized Hermite-Gaussian laser modes will produce undulator and betatron

radiation with the parameters:

kβx =

(
4Cα2

x

γ0w2
0

)1/2

, (14)

ku =

∣∣∣∣k2
p

2

(
1

kn
− 1

km

)
+

(n+ 1)

ZR,n
− (m+ 1)

ZR,m

∣∣∣∣ , (15)

au =
C |δn,m| ku
w0(k2

u − k2
β)
e−(∆k)kpL2/2 cosh

[
(∆k)kpL

2
]
, (16)

with n (even) and m (odd) the mode numbers, ∆k = kn−km, ZR,n and ZR,m are the Rayleigh

lengths of two laser pulses [both laser pulses have equal matched radii w0 and equal rms

(intensity) pulse lengths L], and it is assumed kn, km � kp. The coefficient α2
x, assumed to

be greater than zero, is

α2
x =

a2
0,n

n!2n

[
n!

(n/2)!

]2

(2n+ 1)−
4a2

0,m

m!2m

[
m!

(m−1
2

)!

]2

, (17)

where a0,n and a0,m are the amplitudes of the laser modes (defined in Ref. [34]). Note that,

in general, the focusing is asymmetric kβx 6= kβy, however, additional laser pulses, polarized

orthogonally (with ∆kL� 1) or temporally separated, can be used, following the techniques

described in Ref. [34], to control kβy. The undulator strength is given by the parameter

δn,m =
4a0,na0,m√
n!m!2n+m−1

(−1)
n+m−1

2
n!m!

(n
2
)!(m−1

2
)!
. (18)

If the mode frequency difference is larger than the plasma frequency, so that ∆k � kp ∼ 1/L,

then the wake excitation averages over the fast oscillation and au ≈ 0.

For the case when the two laser modes have the same wavelength and considering the

modes n = 0 and m = 1, the undulator period is given by Eq. (10), and, for ku � kβ, the

undulator strength is

au ≈ 2πa0,0a0,1Cw0/λL. (19)

Using multiple modes enables larger undulator strengths (by a factor ≈ w0/xci). Note that

a Gaussian laser with a small centroid displacement is equivalent to this case (k0 = k1):

a modal decomposition of a Gaussian with a centroid offset yields a0,0 = a0 and a0,1 =

a0xci/w0, for xci � w0.

The strong focusing of the plasma wave (large aβ) will tend to suppress the FEL insta-

bility, since the transverse momentum of each electron will vary with betatron amplitude.
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As demonstrated in Ref. [34], using multiple Hermite-Gaussian laser modes can reduce the

strong focusing of the wakefields (reduce kβ). Consider the following example of a wakefield

excited by two laser modes: n = 0, m = 1, a0,0 = 0.145, a0,1 = 0.1, λ0 = λ1 = 0.8 µm,

and both modes matched to the plasma channel (n0 = 1018 cm−3) with w0 = 7 µm. An

injected beam will experience a 1.2 mm undulator period with strength au = 1.2. Assuming

γ0 = 515 and εn = 0.1 µm, the beam will generate 4 nm radiation. The betatron period is

k−1
β ' 3.3λu with average betatron strength 〈a2

β〉 ' 0.01 for a matched beam. For 300 A

(3 pC in 10 fs), the FEL parameter is ρ ≈ 0.008.

In conclusion, we have proposed a laser-plasma-based concept for a compact undulator

capable of producing sub-millimeter wavelength and undulator strength on the order of

unity. Such a plasma undulator is produced by initiating pulse centroid oscillations in a

plasma channel or by using multiple laser pulses with different Hermite-Gaussian modes

(even and odd). Such a laser-plasma-based undulator offers great flexibility and tunability.

For example, polarization control of the plasma undulator is achieved by the direction of the

initial laser pulse centroid displacement, and elliptical polarization with arbitrary ellipticity

can be produced by injecting the laser pulse into the channel off-axis and at an angle.
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Tilborg, Cs. Tóth, S. Trotsenko, T. S. Kim, M. Battaglia, T. Stöhlker, and W. P. Leemans,
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