
This is the accepted manuscript made available via CHORUS. The article has been
published as:

From Phase Locking to Phase Slips: A Mechanism for a
Quiescent H mode
Z. B. Guo and P. H. Diamond

Phys. Rev. Lett. 114, 145002 — Published  6 April 2015
DOI: 10.1103/PhysRevLett.114.145002

http://dx.doi.org/10.1103/PhysRevLett.114.145002


From Phase Locking to Phase Slips: A Mechanism for Quiescent H -mode

Z. B. Guo1, ∗ and P. H. Diamond1, 2

1WCI Center for Fusion Theory, NFRI, Daejeon 305-333, South Korea
2CMTFO and CASS, University of California, San Diego, California 92093, USA

(Dated: March 13, 2015)

We demonstrate that E×B shear, V ′E×B , governs the dynamics of the cross phase of the peeling-
ballooning(PB)-mode-driven heat flux, and so determines the evolution from ELMy(edge-localized-
mode) H-mode to Q(quiescent) H-mode. A physics-based scaling of the critical E × B shearing
rate(V ′E×B,cr) for accessing the QH-mode is predicted. ELMy H-mode to QH-mode evolution is
shown to follow from the conversion from a phase locked state to a phase slip state. In the phase
locked state, PB modes are pumped continuously, so bursts occur. In the slip state, the PB activity
is a coherent oscillation. Stronger E × B shearing implies a higher phase slip frequency. This
finding predicts a new state of cross phase dynamics and shows a new way to understand the
physics mechanism for ELMy to QH-mode evolution.

PACS numbers:

Understanding relaxation mechanisms in far from equi-
librium systems is an outstanding goal in many fields,
e.g., fluid dynamics, solar physics, space physics, labo-
ratory plasma. Sometimes the relaxation exhibits vio-
lent behavior, such as flares in the solar coronal[1], mag-
netic sub-storms in the magneto-sphere[2], disruptions in
tokamaks[3]. A common feature of these events is that
there is an extended period of free energy accumulation
prior to a sudden eruption and energy release. Sometimes
the relaxation is gradual, and occurs via excitations of
waves and turbulence, such as Alfvén waves in the solar
wind, drift waves in tokamaks, etc. In this scenario, the
energy is released in a much “softer” way. In the H-mode
edge of tokamaks, giant type-I ELMs and QH-mode are
examples of violent- and soft energy release processes,
respectively. In this paper, we relate violent and soft
energy release to phase evolution dynamics.

ELMy H-mode and QH-mode are two principal favor-
able operating scenarios of future burning plasma de-
vices, e.g., the ITER. In ELMy H-mode, the thermal
energy is released in a highly transient, episodic way,
and the induced heat load may erode plasma facing
components and degrade performance. ELM physics,
especially the presumed underlying instability mecha-
nism(i.e., the PB mode), has been studied extensively[4].
PB modes are ideal MHD instabilities which couple mag-
netic curvature(i.e., ballooning) drive and current gradi-
ent drive(i.e., kink). PB modes are thus hybrids of sur-
face kinks(i.e., “peeling”) and ballooning modes. The
pressure gradient ultimately is the source for both these
effects. For ballooning, it enters directly. For peeling,
it enters via the bootstrap current, driven by pressure
gradient[5]. Recently, the nonlinear dynamics of an ELM
crash was addressed by employing random phase scat-
tering concepts. A nonlinear criterion for when the ELM
crash actually occurred was also given[6]. In experiments,
much effort has been devoted to reducing the size of
ELMs to an acceptable level[7–9]. In contrast to the large

crash of the pressure profile in the ELMy H-mode, the
edge pressure profile finds a steady weak oscillatory state
in the QH-mode, so impurities are expelled effectively
and the plasma facing components are not eroded[10].
Thus QH-mode is an attractive scenario for a fusion reac-
tor. There is well documented experimental evidence[11]
that E × B shear(V ′E×B—driven by radial electrostatic
field shear) is a central ingredient in determining which
type of H mode the plasma system stays in. The most
obvious aspect of accessing QH-mode is that it requires
V ′E×B to exceed a critical value[11]. The critical role of
V ′E×B for the L→H transition has been extensively stud-
ied both by experiment and theory. However, a precise
understanding of the role of V ′E×B in ELMy H-mode to
QH-mode(ELMy→Q) evolution remains elusive[12]. In
other words, how does the critical E × B shear control
access to QH-mode? Note that QH-mode is not a state
of pure linear stability, as the edge harmonic oscillation
is observed[10].

Any precise understanding of ELMy→Q evolution re-
quires treating the relaxation physics of the H-mode
in a proper framework. The ELMy→Q evolution phe-
nomenon clearly is beyond any linear theory or quasi-
linear theory. The H-mode is a state where the pressure
profile is near marginal to PB instability, and the ampli-
tude of the ambient turbulence is weak. Therefore the
nonlinear processes associated with the amplitude of the
PB modes are restricted. It has been shown that phase
dynamics is a useful concept for describing the multi-
scale dynamics of a marginally stable system[13, 14].
The phase determines the macroscopic state of the sys-
tem, and so the phase dynamics of the PB modes is cru-
cial in determining the macroscopic state of the H-mode
pedestal. In this work, we investigate the ELMy→Q evo-
lution mechanism by means of phase dynamics concepts,
i.e., by calculating the cross phase dynamics of the PB
driven heat flux in the presence of an E × B shear flow.
This methodology is in distinct contrast to the conven-
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tionally employed eigenmode and quasi-linear analysis,
which implicitly take the cross phase as fixed. For the
first time, we find that if |V ′E×B | < |V ′E×B,cr|, the cross
phase will lock to a fixed value, for which the PB modes
are continually pumped and can reach a large amplitude.
In that case, the thermal energy tends to be released in
a burst, so the pressure profile collapses rapidly. There-
fore, the phase locked state corresponds to the ELMy-H
mode. If |V ′E×B | > |V ′E×B,cr|, we show that the cross
phase selects a value that leaves the pressure- and veloc-
ity components of the PB modes out of phase, except for
“phase slips” of short duration. Since the phase slip is
short and occurs periodically, the PB modes are weakly
and periodically pumped. The stronger the E×B shear-
ing, the higher the phase slip frequency will be, so the
ELM asymptotes to a continuous oscillation. The effi-
ciency of impurity expulsion in QH-mode is enhanced.
The phase slip provides a means for regulating thermal
energy release, and hence keeps the H-mode in a more
quiescent state. This model gives a new, general way to
understand the ELMy→Q evolution mechanism.

The PB instabilities in the edge of a confined plasma
are driven by the edge pressure gradient[4]. The PB
modes are excited via phase coupling among the PB
pressure- and velocity perturbations, which in turn pro-
duce the PB heat flux. Generally, the evolution of the
edge pressure(P ) can be written in the following form

∂

∂t
P + ~V · ∇P = D∇2P + sDW + Sin, (1)

where the total pressure P = 〈P 〉+ δP is composed of a
mean- and perturbed component with 〈...〉 the poloidal

average. The convection velocity is ~V = ~VE×B + δ~VPB
with ~VE×B the E × B shear flow driven by the radial

electrostatic field and δ~VPB is velocity perturbation as-
sociated with the PB mode. sDW is the noise associated
with the ambient small scale drift wave turbulence(e.g.,
ion-temperature-gradient turbulence). D∇2P accounts
for the dissipation of the pressure, with D a diffusion co-
efficient. Sin is associated with the heat flux from the
core of the Tokamak, so Eqn. (1) is a flux-driven system.
The evolution equation for the mean pressure follows as

∂

∂t
〈P 〉 = −∂x〈δVPB,xδP 〉+ (D +DT )∇2〈P 〉+ Sin, (2)

where the noise impacts the evolution of 〈P 〉 via a tur-
bulent diffusion process, and hence one has 〈sDW 〉 =
DT∇2〈P 〉 with DT the effective diffusion coefficient. A
quasi-steady state of the mean pressure profile can be
sustained by the ‘fueling’ term Sin(Fig. 1). Since the
ambient turbulence is strongly quenched in the H-mode,
DT can not reach a significant level. 〈δVPB,xδP 〉 is the
heat flux driven by PB modes. To excite PB modes,
a finite cross correlation between δVPB,x and δP is re-
quired. This is in turn determined by their cross phase.

FIG. 1: Set up of the analysis.

If the cross phase is π/2, δVPB,x and δP will be out of
phase, and the pumping of the PB modes will stop. In
contrast to eigenmode or quasi-linear analysis(where the
cross phase is taken fixed), in this model the cross phase
is evolving dynamically. The framework of phase dy-
namics aims to capture this. A direct way to obtain the
evolution equation for the cross phase is via the evolution
equation of δP

∂

∂t
δP + δ~VPB · ∇〈P 〉+ ~VE×B · ∇δP = s̃+D∇2δP, (3)

where s̃ = s̃PB + s̃DW with s̃PB =

−
[
∇ · (δ~VPBδP )− ∂x〈δVPB,xδP 〉

]
. s̃PB accounts

for the random phase scattering induced by PB mode
couplings, which is relevant to the nonlinear criterion
for ELM crash[6]. The noise s̃ can trigger stochastic
avalanches of δP , which serves as a mechanism for gener-
ating pressure perturbations[15]. After Fourier transfor-

mation for δP and δ~VPB , one has δP → |δPk|ei
~k·~r+iΘk

and δ~VPB → |δ~VPB,k|ei
~k·~r+iαk where Θk and αk are

the phases of δPk and δVPB,k. Then the real part of
the Fourier component of the cross correlation can be
written as 〈δVPB,xδP 〉k = |δVPB,kx||δPk|cos(Θk − αk).
The phase difference, Θk − αk, is just the cross phase
between δ~VPB,k and δPk. For kinetic velocity fields, αk
acts as a reference phase, so that without lose of general-
ity, we can take αk = 0. Then the cross phase dynamics
is determined solely by Θk. To obtain a compact form
for its evolution, we use the approximations: (1) the
intensities of δPk and δVPB,k vary slowly in time and
space, i.e., |∂xln|δPk||, |∂xln|δVPB,k|| � |k|; (2) the rate
of spatial variation of the cross phase is much smaller
than |k|, i.e., |∇Θk| � |k|; (3) the poloidal component

of ~VE×B � toroidal component. Approximations (1)
and (2) are proper for the H-mode state, where the
inhomogeneities in |δPk|, |δVPB,k| and Θk originate in
the pedestal structure. Approximation (3) applies to
toroidally confined plasmas. Since VE×B is differential
rotation, we can reexpress the 3rd term on the LHS of
Eqn. (3) as ~VE×B · ∇δP = V ′E×B,y∆x∂yδP where ∆x
measures the distance from the center of the envelope



3

of δP . ∆x can be estimated as the radial extent of δP .
Substituting the Fourier representations of δP and δVPB
into eqn. (3) and using the approximations above yields
the evolution equation for the cross phase Θk:

d

dt
Θk = kyV

′
E×B∆x− |δVPB,kx|

|δPk|
〈P 〉′sinΘk + s̃Θ

k , (4)

where s̃Θ
k is the random phase scattering induced by the

noise s̃k. Eqn. (4) is just the Adler equation[16], and
is also the mean field form of the Kuramoto model—
the most representative model describing synchronization
phenomena in populations of coupled oscillators[17]. The
1st term on the RHS of Eqn. (4) is the winding effect
due to shearing, which tends to modulate the cross phase
between δPk and δVPB,k. The 2nd term acts as a pin-
ning force. It is a nonlinear term and attracts the cross
phase to a fixed value. |δVPB,kx|/|δPk| is determined by
the response function of the relevant mode(here, the PB
mode). This factor is in turn determined by the struc-
ture of the PB mode, and the dependence upon the linear
growth rate, E×B shearing and the nonlinear saturation
mechanism. Eqn. (4) provides a simple, straightforward
way to capture the essence of the cross phase dynamics.
Eqn. (4) is also a general equation for describing phase
dynamics in systems with convective interaction, and so
has broad applicability.

Focusing on the influence of flow shear on the cross
phase dynamics, we first consider the scenario of no
noise(s̃k = 0). In this scenario, one has

d

dt
Θk =

|δVPB,kx|
|δPk|

〈P 〉′ (K − sinΘk) , (5)

with K = kyV
′
E×B∆x|δPk|/(〈P 〉′|δVPB,kx|). There exist

two types of solutions of Eqn. (5): one phase locked and
the other the phase slip. The phase locked solution is

Θk = arc sinK, for |K| < 1. (6)

Θk is ‘locked’ to a stable fixed value(Fig. 2) and
|Θk| < π/2, so δPk and δVPB,k stay coherent. Mean-
while, since the mean pressure profile stays in a quasi-
steady state before the crash, the thermal energy stored
in the mean pressure profile is continuously extracted by
PB mode-induced heat flux. The phase locked solution
provides a robust route for thermal energy release. With
locked phase, δP will grow large, leading to collapse of
the edge pressure profile and the formation of filamen-
tary structures[18]. This violent thermal energy eruption
phenomenon corresponds to the so-called ELMy H-mode.
VE×B shearing tends to stabilize the ELMy H-mode via
upshifting the value of |Θk|, which in turn reduces the
size of the ELM. Another factor impacting the size of
the ELM is the spectrum structure of δVPB,k. For a
broad spectrum, the random scatterings among different
PB modes tend to facilitate the formation of a state of PB
turbulence, so that size of the induced ELM is reduced[6].

The phase slip solution can be cast in the following
form

Θk = ωkt+ h(ωkt), for |K| > 1, (7)

where ωk =
|δVPB,kx|
|δPk| |〈P 〉

′|
√
K2 − 1 and h(x) is a certain

periodic function with period 2π, i.e., h(x+ 2π) = h(x).
The specific form of h(x)[16] is

h(ωkt) = 2tan−1

[
1

K
+

√
K2 − 1−K

K
tan

ωk
2
t

]
. (8)

A very interesting property of the phase slip solution is
that most of the time, Θk = 2nπ + π/2(here we assume
kyV

′
E×B∆x > 0; n is a positive integer), i.e., δPk and

δVPB,k stay out of phase, except for short durations of
the phase slip(Fig. 2). During the phase slips, the PB
modes are pumped, impulsively. Since most time δPk
and δVPB,k are out of phase, the thermal energy tends
to be released in small episodes and hence the H-mode
accesses a more quiescent state. The frequency of the
phase slip in Eqn. (7) is

Ωslip = kyV
′
E×B∆x

√
K2 − 1

K
. (9)

In contrast to the phase locked scenario, here E × B
shearing tends to increase the frequency of the phase
slips. I. e, the phase slip is easier to occur when V ′E×B
becomes stronger(Fig. 2). The increase of the edge
E×B shearing will improve the effectiveness of the QH-
mode for impurity control. In the strong shearing limit,√
K2 − 1/K → 1, one has Ωslip ' ωk. There, the cross

phase evolves so that the QH-mode supports a periodic
oscillation with no bursts.

The critical E ×B shearing rate, governing the evolu-
tion from phase locked state to phase slip state(i.e., the
ELMy→Q evolution), is obtained by requiring |Θk| =
π/2, i.e.,

|V ′E×B,cr| =
1

|ky∆x|
|δVPB,kx|
|δPk|

|〈P 〉′|. (10)

|V ′E×B | < |V ′E×B,cr| corresponds to the phase locked
state and |V ′E×B | > |V ′E×B,cr| is the phase slip
state. To obtain a more detailed scaling of the crit-
ical shearing, one needs to know the structure of
|δVPB,kx|/|δPk|. In the linear approximation, one has
mini(γPBδVPB,kx+ ikyV

′
E×B∆xδVPB,kx) = −jBS,kBθ−

ikxδPk where jBS is the perturbed bootstrap current,
jBS,k = −ikxε1/2δPk/Bθ(mi—ion’s mass; ni—ion’s den-
sity; γPB—the linear growth rate of the PB mode;
ε = a/R—the aspect ratio of the tokamak; Bθ—the
strength of poloidal magnetic field)[19]. In the case
of strong E × B shearing(V ′E×B > γPB), one obtains

|δVPB,kx|/|δPk| ' |(1− ε1/2)kx|/
√
γ2
PB + k2

yV
′2
E×B∆x2 '
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|(1 − ε1/2)kx|/|kyV ′E×B∆x|. Substituting it into Eqn.
(10) yields the critical shearing scaling:

|V ′E×B,cr| ' τ−1
A

(
1− ε1/2

)1/2 β1/2

|ky∆x|

(
LP
∆x

)1/2

, (11)

where LP is defined as LP ≡ |〈P 〉|/|〈P 〉′| and τA =
VA/LP is the Alfvén time across the edge with VA =
B/
√
mini(B—the strength of total magnetic field). β =

2〈P 〉/B2 is the plasma beta in the edge region. In de-
riving Eqn. (11), the approximation |kx| ' 1/∆x was
employed. Using the radial force balance relation for
the ions enE = −VφBθ + ∂x〈P 〉(Vφ—ion’s toroidal ro-
tation velocity; we have assumed ion’s poloidal rotation
in the H-mode pedestal is low[11]), one has V ′E×B =

−V ′φBθ/B + ( 〈P 〉
′

enB )′. Therefore, there are two ways to
facilitate accessing QH-mode: enhancing the steepness
of the edge pressure profile(which requires more exter-
nal power input) and increasing the toroidal rotation
shear(which is more feasible in practice, currently).

FIG. 2: Phase locked(blue plot) vs phase slip(green- and red
plots).

The noise impacts the phase dynamics by introducing a
random source in the phase equation. The cross phase ex-
hibits different responses to the noise in the phase locked
and phase slip states. An enlightening way to under-
stand the noise effect is by using the “phase potential”
concept[13]. In the phase locked scenario, the potential
well has finite depth. To “kick” the cross phase out of the
well, it requires the amplitude of the noise to reach a cer-
tain level, or else, the cross phase only bounces around
its fixed value(Fig. 3). In the phase slip scenario, the
potential well is flattened, so even weak noise can induce
phase slips(Fig. 3).

In the H mode state, the level of the noise is bounded
and relatively low, so for the phase locked sate, the cross
phase keeps jumping around its locked value(blue plot
in Fig. 4), which corresponds to small bursts in the
heat flux. The random phase scattering induced by the
noise becomes crucial when the ELM approaches its crash
threshold, in which any tiny enhancement of the cross
correlation may induce an ELM crash. For the phase slip
scenario, the noise adds extra random phase slips to the
coherent phase slips induced by the mean E × B shear-
ing. As a result, the periodic phase slips are “smeared”

t

Θk

phase-slip potential 

phase-lock potential 

: weak noise : strong noise

FIG. 3: Sketch of noise effects.

FIG. 4: Noise effects on cross phase dynamics.

by the noise and the QH mode enters a state of weak
MHD oscillations with a broad frequency-spectrum(Fig.
4).

In summary, the phase dynamics concept is shown to
be a useful framework for describing nonlinear MHD re-
laxation dynamics in H-mode, which is a near marginal,
self-organized state. By studying the E × B shearing
effects on the cross phase dynamics, we derive a physics-
based scaling of the E×B shear strength required to ac-
cess the QH-mode. We show that if |V ′E×B | < |V ′E×B,cr|,
the cross phase is locked to a fixed value and PB modes
are continually pumped. There the thermal energy is
released in large bursts with collapse of the edge pres-
sure profile, so the so-called ELMy H-mode occurs. If
|V ′E×B | > |V ′E×B,cr|, δP and δVPB are coupled only
during periodic, short duration phase slips. The ther-
mal energy is released during short episodes and a QH-
mode-like is induced. The periodic phase slips can be in-
terpreted as the edge harmonic oscillation phenomenon,
observed during QH-mode[10]. The noise is benign for
H-mode operation. In the phase locked scenario, the
noise tends to reduce the coherence between δP and
δVPB , and hence reduce the size of the ELM. In the
phase slip scenario, the noise can increase the phase
slip frequency, and hence make for an attractive quasi-
continuous “grassy ELM” state, which efficiently expels
impurities. The theoretical framework proposed in this



5

letter unifies the treatment of several different effects,
such as E × B shearing(relevant to coherent phase dy-
namics) and noise/mode couplings(relevant to stochastic
phase dynamics[6]), on the phase dynamics. In this work,
we assumed that, before the crash, the mean pressure
profile is in a quasi-steady state. For future work, it is
important to construct a flux driven system and inves-
tigate the feedback dynamics between the edge pressure
profile and the cross phase.

We are grateful to P. W. Xi and X. Q. Xu for useful dis-
cussions. We thank Peking University and HUST, where
part of the work was done, for their hospitality. We ac-
knowledge fruitful interactions at the Festival de Théorie
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