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    Optical matter can be created using the intensity gradient and electrodynamic (e.g., optical binding) 

forces that nano- and micro-particles experience in focused optical beams. Here we show that the force 

associated with phase gradient is also important. In fact, in optical line traps the phase gradient force is 

crucial in determining the structure and stability of optical matter arrays consisting of Ag nanoparticles 

(NPs). NP lattices can be repeatedly assembled and disassembled simply by changing the sign of the 

phase gradient. The phase gradient force induces strain in optically bound Ag NP lattices, causing 

structural transitions from 1-D “chains” to 2-D lattices, and even to amorphous structures. The structural 

transitions and dynamics of driven transport are well described by electrodynamics simulations and a 

drift-diffusion Langevin equation.  

 

 

    Optical matter, ordered assemblies of small particles drawn together and stabilized by electrodynamic 

inter-particle forces in an optical field, represents a unique type of material [1]. Since the first observation 

of optical binding between two dielectric microparticles by Burns et al. [2], theoretical and experimental 

investigations of optical binding have significantly enriched the examples of optical matter [3-12]. 

Notably, Grzegorczyk et al. [13] recently made a major step toward laser-trapped mirrors [14] by 

assembling a monolayer of ~150 optically bound polystyrene microspheres at a dielectric surface in 

water. Assembling such an extended optical matter system is challenging. One needs a spatially extended 

optical beam to illuminate the particles with sufficient intensity to overcome Brownian random forces. 

Both the gradient forces that confine the (individual) particles, and the optical binding forces that can 

unite the particles into arrays, are linearly proportional to the intensity. Apart from increasing the laser 

power to enhance optical binding, metal NPs provide an alternative solution for creating large scale 

optical matter assemblies. Metal NPs exhibit much stronger light scattering, per unit volume, compared to 

dielectric particles, leading to “ultra-strong” optical binding forces [15]. The structure of optically bound 

metal NPs can be controlled by adjusting the intensity gradient of the trapping beam [16]. If other optical 
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forces could be added to the well-known optical binding and gradient forces one could have greater 

control over the dynamics of assembly and structures formed. 

    In this letter, we demonstrate that the phase gradient of an extended optical field can strongly affect the 

self-organization of optical matter. The phase gradient has generally been ignored in optical trapping; 

most typically the optical force transverse to the optical axis of a linearly polarized laser beam is assumed 

to be solely due to the intensity gradient, i.e., the “gradient force” [4,17]. However, recently Grier and 

colleagues demonstrated that strong optical forces could also arise from phase gradients in an extended 

beam of light by redirecting radiation pressure to the transverse plane [18]. Here we show that phase-

gradient forces drive assembly and allow tailoring the structures of Ag NP arrays in optical line traps. 

Optical line traps have been used for studying optical binding [2,11,12,15,19]. A typical optical line 

provides a strongly focused field along the short axis to confine the particles (in 1-D) yet a relatively flat 

intensity profile along the long axis that facilitates optical binding interactions over many particles. 

Interestingly, the 1-D lattices of optical matter that we create can exhibit structural instabilities associated 

with a yield stress. In particular, we show that a structural collapse occurs in the central portion of larger 

Ag NP arrays, even with a flat intensity profile. Our electrodynamics simulations reveal that the structural 

changes arise from a compressive phase gradient force that is extensive in the number of NPs. 

  
FIG. 1. (a) Generation of optical line traps by phase modulation of a Gaussian beam. Left: images of the 

incident beam profile and complementary phase masks used in the experiments. Right: images of the 

intensity (top) and phase (bottom) profiles predicted from the Fourier transforms of the phase masks as 

performed by the objective lens. (b) The intensity profiles and (c) the phase profiles along the long axes 

of the line traps measured using a wavefront sensor. The measured results for three different profiles 

(L1�L3) are shown as filled and open points (type I and II, respectively). The solid and dashed lines are 

the corresponding profiles calculated from the incident beam and phase masks for type I and type II phase 

profiles on the SLM. 



3 
 

 

    We begin by demonstrating that the phase gradient, rather than intensity gradient, strongly influences 

the dynamics of single Ag NPs in aqueous solution confined by an optical line trap over a coverslip. 

Citrate coated Ag NPs with diameters of 151±13 nm were used in the experiments, and optical line traps 

were created by phase modulation of a collimated Gaussian beam (λ = 800 nm in vacuum) using a spatial 

light modulator (Fig. 1(a), also see section I in the Supplemental Material [20]). To distinguish the 

contributions of phase and intensity gradients to the total optical force on a NP, we designed two types of 

optical line traps; they have the same intensity profile but opposite phase gradients (denoted as type I and 

type II). The phase mask for a type I optical trap represents the phase modulation caused by a convex 

cylindrical lens while that for a type II trap represents the phase modulation by a concave cylindrical lens. 

They generate the same intensity distribution at the focal plane of a spherical lens (Fig. 1(a) and lines in 

Fig. 1(b)), but exactly opposite phases along the long axis of the optical lines (Fig. 1(a) and lines in Fig. 

1(c)). In the experiments, we produced three pairs of line traps (each with two types of phase profiles); 

denoted as L1, L2 and L3 with increasing lengths and thus decreasing maximum intensities. We measured 

their intensity and phase profiles using an optical wavefront sensor (Fig. S1 [20]). The measured profiles 

(data points in Fig. 1(b) and 1(c)) agree well with the target parabolic profiles (solid and dashed lines) that 

we designed.  

 
FIG. 2. (a) Trajectories of a single Ag NP (150 nm diameter) in two different types of line traps. The 

white dots are darkfield optical images of the Ag NP obtained with a frame rate of 200 fps that are 

superimposed on the images of the line traps (red). The calculated intensity profiles of the line traps (pair 

L2) are shown in red for reference. x = 0 indicates the center of a trap. (b) Representative motions 

(trajectories) of single Ag NPs in line traps with different intensity and phase profiles. Note that each 

segment of the trajectories (i.e., the black and red parts) represents the motion of a single Ag NP in a type 

II then type I phase profile. The maximum distance to the center in each panel corresponds to a position 

where the line trap could confine the NPs along its short axis. The lateral trapping forces become weak 
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close to the ends of the traps; see Fig. S3 [20]. Theoretical trajectories calculated using a Langevin 

equation model are also shown for comparison. 

    Using these pairs of line traps, it is possible to determine the relative magnitudes of the intensity-

gradient force (Fint) and the phase-gradient force (Fpha) exerted on a single Ag NP. Note that intF I∝ ∇  

and phaF I ϕ∝ ∇  [18,28], where I and φ correspond to the intensity and phase of the field, respectively. 

For a Gaussian intensity profile and a parabolic phase profile, 2 2
1 exp( / )int C x xF w= −  and 

2 2
2 exp( / )pha C x xF w= −  where C1 and C2 are constants and w is a scale parameter of the Gaussian 

intensity profile (see sections II and VIII in [20]). Fint always tends to attract a NP to the center of a line 

trap, while Fpha does the same in a type I line trap (i.e., C1 < 0), but repels the NP towards the distal ends 

in a type II line trap (i.e., C2 > 0). As a result, a comparison of the directions of motion of a NP establishes 

the dominant force. Fig. 2 clearly shows that a single NP moves from either end to the center of a type I 

line trap, and moves from the center to either end in a type II trap.  

    With the coordinates of Fig. 2(a), the total optical force for a type I trap is  

  
FI = − Fint − Fpha = A1x exp(−x2 / w2 ),   (1) 

and the total optical force for a type II trap is 

  
FII = − Fint + Fpha = A2x exp(−x2 / w2 ),   (2) 

where constants A1 < 0 and A2 > 0. In this sign convention we assume a force that drives a NP to the 

center of a trap to be negative. Assuming a uniform rectilinear motion of a Ag NP in a Stokes flow, and 

from the fluctuation-dissipation relation [29], the total optical force would be F
opt

= F
d

 where 

F
d

= 6πμRv  is the viscous drag force, μ is the dynamic viscosity of water, R is the hydrodynamic radius 

of the NP, and v is the particle's velocity. The velocities are estimated by fitting the NP trajectories (e.g., 

the portions of distances > 1.5 µm in the experimental trajectories of Fig. 2(b)) with linear functions; the 

velocities are given by the slopes. The results are shown in Fig. S4 [20] and the calculated optical forces 

|Fpha| and |Fint| are summarized in Table 1 assuming NP heating (the estimated temperature increase at the 

NP surface is 21 K; see section V in [20]). It is clear that the phase-gradient forces are much larger than 

the intensity-gradient forces, demonstrating that the phase gradients rather than the intensity gradients 

determine the dynamics of NPs confined by optical line traps. This conclusion is also applicable for much 

smaller Ag NPs (e.g., 40 nm dia.), and is supported by our Finite-difference time-domain (FDTD) 

simulations presented in section VI of [20]. 
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Table 1. Optical forces calculated using Stokes’ law. 

Pair of traps  |Fpha|  (fN) |Fint| (fN) 

L1 56 7 

L2 46 6 

L3 34 5 

 

    The dynamics of a single Ag NP in the field of the optical forces are described using a 1D-generalized 
Langevin equation: 

    (3)                     

where m is the mass of the particle, q is the generalized displacement coordinate for the NP, F(q) 

corresponds to the total optical force experimentally simulated in the medium (i.e., Eqs. 1 & 2), ξ(t – τ) 

corresponds to the dissipative memory kernel and η(t) is the Gaussian random noise. This equation can be 

simplified to [20]: 

      (4) 

where γ is the frictional coefficient between the NP and the medium. The simulated single NP trajectories 

agree well with the experimental data (Fig. 2(b)); parameters for the simulation are presented in Table 2.  

 

Table 2. Parameters of the Langevin model used for simulating the single NP dynamics in optical lines. 

Pair of traps A1 (fN) A2 (fN) w (µm) γ (fNs/µm)

L1 27 -30 9.2  

1.31 L2 21 -22 13.0 

L3 18 -19 17.0 

 

    When multiple Ag NPs are confined by a line trap, optical binding forces arising from the 

electrodynamic interactions among these NPs lead to the formation of arrays of regularly spaced 

structures, i.e., optical matter. In theory, the optical matter in a quasi-1-dimensional field will be single 

linear chain of NPs separated by distances (approximately) equal to an integral number of wavelengths of 

light in the medium [3,11]. Such optical binding behavior is clearly exhibited by the trajectories and 

images of 5–8 Ag NPs in Fig. 3(a) (i.e., from 0 to 1 s). However, when there are 10 or more Ag NPs in 

the chain, the optical matter undergoes structural changes for the present experimental conditions. In 

particular, dimers aligned along the short axis spontaneously form near the chain’s center. Two structural 

change events are shown in the optical images in Fig. 3(b) where a NP moves alongside its neighbor in 
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the x-y plane (the beam propagates along the z-direction), resulting in a dimer along the short axis. Similar 

structural changes are shown in Fig. S5 [20].  

    Fig. 3(c) shows that the linear chains of optical matter exhibit instabilities and undergo transitions 

between crystalline and amorphous structures when there are many Ag NPs, for example ≥ 20 NPs in the 

trap. Interesting metastable lattices appear, e.g., at 385 ms and 1785 ms. These results indicate that as the 

NP chain gets longer, the force from the interacting particles in the optical line trap becomes large and 

eventually overwhelms the optical binding interactions [16]. We denote the structural changes a “phase 

transition”; from 1-D chains to 2-D arrays to dynamic amorphous structures. 

 
FIG. 3. (a) Trajectories of Ag NPs self-organizing in a type I (i.e. compressive) line trap. The solid lines 

are the centroid positions of the NPs relative to the center-of-mass (the black dashed line) of the whole 

chain. Note that two trajectories (i.e., the top and bottom boundary lines of the yellow and cyan shaded 

regions) merge into a single line at times i and ii, respectively, indicating dimer formation events. (b) 

Representative darkfield images of NPs undergoing structure evolution (the time interval between the 

panels is 5 ms) corresponding to the two events in panel a. NPs of interest are marked with artificial 

colors. (c) Images of another chain that exhibits rapid transitions between crystalline, metastable and 

amorphous structures. 

 

    When multiple Ag NPs self-organize in a type I optical line trap, the phase gradient exerts a 

centrosymmetric compressive optical force on the NP chain. This compressive force causes the central 

region of the chain to behave as a rigid body [11,12]. The center-of-mass of the chain tends to be 

coincident with the center of the trap as indicated by the dashed line in Fig. 3(a). Our FDTD simulation 

(section VII of [20]) reveals that this compression can induce structural changes when the length of the 

NP chain exceeds a threshold. As shown in Fig. 4(a) and (b), a chain of 11 (or fewer) NPs can self-

organize into a stable linear structure in a simulated line trap that is similar to our experimental 

conditions. However, the structure collapses for 12 (or more) NPs, typically at the central pair. The 

collapse is triggered by the continuous inward translation of the terminal NPs and their addition to the 
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total inward force. Thus, more axial force (stress) is exerted on the central pair of NPs when more 

particles are in the line trap.  

    This structural instability is not an intrinsic property of optical binding when one assumes a plane wave 

optical field. To make this clear, we also investigated the self-organization of NP chains in a plane wave. 

The results show that long chains are stable (curves 1&2 in Fig. 4(b) and Fig. S11 [20]), and the 

separations of adjacent NPs in a plane wave are always larger than those in an optical line trap (curves 

3&4), indicating weaker compression by optical forces in the plane wave. In fact, Fig. 4(b) shows that the 

chain tends to expand with more NPs in the plane wave, but this trend is only maintained for a few NPs 

(e.g., ≤ 6) in the optical line. This observation shows that there is a threshold where the axially 

compressive optical force becomes comparable or even larger than the optical binding force and 

eventually causes collapse of the central pair. In principle, the near-field electrodynamic interaction 

would result in the particles forming an aggregate, but this is prevented by Coulomb repulsion since the 

Ag NPs are coated with charged surfactants to prevent aggregation. So, when the inter-particle separation 

decreases significantly, the Coulomb repulsion and near-field electrodynamics interactions generate 

forces that tend to rotate the pair to the light polarization direction as shown in Fig. 4(c). Therefore, as 

shown in Fig. 3(b), dimers perpendicular to the long axis will form in long chains and do so until the 

stress is reduced below a critical value. 

 
FIG. 4. (a) FDTD simulation of the structural change (stabilization or collapse) of Ag NPs in a type I line 

trap. (b) Equilibrium separations between adjacent NP pairs in the central region (curves 1,3) and at the 

termini (curves 2,4). Plane wave (curves 1,2) as well as the line trap (curves 3,4) are used in the 

simulation. (c) Optical forces between a pair of Ag NP in the central region of the line trap. (d) Optical 



8 
 

forces on a Ag NP when it is located near the central region of a chain with 10 NPs in the line trap. The 

black dashed circle indicates the trapping positions of the NP. The solid blue curve shows a possible path 

for structural collapse where the inter-particle separation along the chain axis (x-axis) is reduced and the 

particle shifts to the transverse orientation (along the y-axis). 

 

    We also observed another dimer formation mechanism where a NP moves along the negative z-

direction (i.e., out of the focal plane) and gets temporarily trapped between two neighbors before jumping 

to the side of one of them to form a dimer. This mechanism, which is similar to the co-trapping behavior 

we reported in [12], is shown and explained in section IV of [20].  

    These strong axial forces, here primarily from the phase gradients, allow exploring the phase diagram 

of optical matter. In traditional materials, an external force imposes a stress on a material, which then 

deforms or undergoes a structural change or even a phase transition in order to relax the strain. For 

example, the crystalline structures of ice, silica and many other materials become unstable and even 

amorphous at high pressure due to pressure-induced amorphization [30-32]. The response of Ag NP 

chains to the optical forces can be viewed in a similar way: the chains tend to form dimers under axially 

compressive stress in order to relax the strain and attain a new stable structure. However, if the forces are 

too strong, here because of a large number of particles in the trap, the optical matter accumulates too 

much stress in both the axial and transverse directions and becomes dynamically amorphous.  

    In conclusion, we have shown that optical phase gradients can be used to tailor the self-organization of 

optical matter in an extended optical field. The structures and structural changes we report here make 

clear the analogy between optical matter and traditional materials, and, more importantly, reflect the fact 

that a rich phase diagram of the structures of optical matter exists and awaits further exploration. Since it 

is easy to modify the phase profile of an optical field by a spatial light modulator, it may be possible to 

design a phase landscape to guide the self-organization of micro/nanoparticles. Understanding and tuning 

phase-related optical potentials will facilitate the design and fabrication of optical matter for applications 

such as the “laser-trapped telescope” mirrors [14], and the discovery of materials with novel properties. 

The insights provided here may thus benefit the research in optics and photonics, astronomy, materials 

science, and many other fields. 
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