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Recently, several broad classes of inflationary models have been discovered whose cosmological
predictions, in excellent agreement with Planck, are stable with respect to significant modifications of
the inflaton potential. Some classes of models are based on a non-minimal coupling to gravity. These
models, which we will call ξ-attractors, describe universal cosmological attractors (including Higgs
inflation) and induced inflation models. Another class describes conformal attractors (including
Starobinsky inflation and T-models) and their generalization to α-attractors.

The aim of this paper is to elucidate the common denominator of these attractors: their robust
predictions stem from a joint pole of order two in the kinetic term of the inflaton field in the Einstein
frame formulation, prior to switching to the canonical variables. Model-dependent differences only
arise at subleading level in the kinetic term. As a final step towards the unification of the different
attractors, we introduce a special class of ξ-attractors which is fully equivalent to α-attractors with
the identification α = 1 + 1

6ξ
. While r is generically predicted to be of the order 1/N2, there is no

theoretical lower bound on r in this class of models.

Introduction. The data releases by WMAP and
Planck attracted attention to a mysterious fact: Two
different models, the Starobinsky model [1] and the
Higgs inflation model [2], make the same prediction, well
matching observational data - both of Planck2013 [3] as
well as Planck2014: In the leading approximation in 1/N ,
where N is the number of e-folds, the spectral index ns
and tensor-to-scalar ratio r are given by

ns = 1− 2

N
, r =

12

N2
. (1)

This could be a coincidence, but further investigation re-
vealed the existence of several broad classes of different
models having the same predictions in the leading ap-
proximation in 1/N , practically independent of the de-
tails of the model.

The first class of these theories were conformal attrac-
tors [4], which described a broad variety of different mod-
els including the Starobinsky model. Further investiga-
tion revealed the existence of α-attractors [5, 6], which
generalized the models of conformal attractors, but pre-
dicted, for not too large values of the parameter α, that

ns = 1− 2

N
, r =

12α

N2
. (2)

The Lagrangian of the α-attractor models of a real scalar
field φ looks as follows in Einstein frame:

LE =
√−g

[
1

2
R− α

(1− φ2/6)2

(∂φ)2

2
− αf2(φ/

√
6)

]
.

(3)
It was shown in [4–6] that the predictions (2) of this class
of models are stable with respect to major changes of
the inflaton potential, which has a functional freedom in
terms of an arbitrary f . In this context, the Starobinsky

model [1] corresponds to a special choice for this function
with α = 1.

Note that both the kinetic and potential energies have
an overall coefficients α. While the former appears in all
versions of α-attractor models, the latter is a matter of
choice since the functions f are nearly arbitrary. How-
ever, by placing α in from of it one reaches an important
goal: while the parameter r is proportional to α, both the
parameter ns and the amplitude of scalar perturbations
of metric are independent of it for this class of theories.

Another class of models [2, 7, 8] described cosmological
attractors with a non-minimal coupling to gravity:

LJ =
√−g

[
1
2Ω(φ)R− 1

2KJ(φ)(∂φ)2 − VJ(φ)
]
, (4)

which we refer to as Jordan frame. For Ω = 1 + ξφ2,
VJ = λφ4 and KJ = 1 it described the Higgs inflation
[2]. In a more general class of models one retains the
same functional relation between the non-minimal cou-
pling and scalar potential,

VJ(φ) =
λ

ξ2
(Ω(φ)− 1)2 , (5)

but allows for a different form of these functions. For
instance, the universal attractor models are based on Ω =
1 + ξf(φ) with an arbitrary function f , and KJ = 1 [7].

In the class of induced inflation models [8] one has
Ω = ξfind(φ) > 0 and KJ = 1. This class of theories is
equivalent to the class of universal attractors up to the
redefinition find(φ) = f(φ) + ξ−1 [10]. However, it is
convenient to consider these two classes of models sep-
arately, by defining universal attractors as the theories
where Ω = 1 in the limit φ → 0, and induced inflation
as the theories where Ω = 0 in the limit φ → 0. The
inflationary predictions of all of these models depend on
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ξ but coincide with (1) in the large ξ limit, and are stable
with respect to certain further modifications of VJ(φ) to
be discussed in this paper. Other choices of Ω and KJ

have been also discussed in the literature. In this paper,
we will call all models of this type ξ-attractors.

In addition to models with one attractor point, there
were double attractors [9]; their predictions interpolated
between the predictions of α-attractors with small α, or
induced inflation at large ξ, and the predictions r = 4(1−
ns) = 8/N of the simplest chaotic inflation model 1

2m
2φ2

in the opposite parameter limit.

Despite a deepening understanding of the nature of
these models [10], a direct link between the models with
non-minimal coupling and the α-attractors was missing,
and their predictions coincided with each other only in
certain limits. In this paper we aim to clarify both the
relations and differences between these models, and un-
ravel the origin of the robust inflationary predictions (2).

Kinetic formulation. Our starting point is a simple
observation that can be phrased as

The inflationary predictions of models whose
kinetic term is given by a Laurent series are
determined by the order and the residue of the
leading pole of the series.

In the above we have assumed minimal coupling to grav-
ity, i.e. Einstein frame, as well as a smooth scalar po-
tential at the location of the pole. Such a model can be
summarised as

L =
√−g

[
1
2R− 1

2KE(ρ)(∂ρ)2 − VE(ρ)
]
. (6)

The case where KE is given by a Laurent series (where
we have assumed the pole to be located at ρ = 0 without
loss of generality)

KE =
ap
ρp

+ . . . , VE = V0(1 + cρ+ . . .) , (7)

is particularly interesting: it corresponds to a fixed point
of the inflationary trajectory, which is characterised al-
most completely by the properties of this point. Indeed,
in the limit of a large number of e-folds, one can assume
that only the leading pole in KE is relevant. This leads
to the simple relation (where we will assume p > 1 for
simplicity)

N =

ˆ
ap
cρp

dρ ∼ apρ
1−p

c(p− 1)
. (8)

Upon inverting this relation, one can calculate the spec-
tral index and tensor-to-scalar ratio at leading order in
1/N :

ns = 1− p

p− 1

1

N
, r =

8c
p−2
p−1 a

1
p−1
p

(p− 1)
p
p−1

1

N
p
p−1

. (9)

Indeed the spectral index depends solely on the order of
the pole, while the tensor-to-scalar ratio also involves the
residue. Note that this yields the same relation between
the 1/N coefficient of the spectral index and the 1/N
power of the tensor-to-scalar ratio as stressed in [11].
Moreover, the kinetic formulation defines not only the
power of 1/N but also the coefficient in the above for-
mula for r.

The above holds for all values values of p > 1, for ex-
ample hilltop inflation models [12] where VE = V0(1 −
(ϕ/µ)n) with p = 2− 2/n, where n can be both negative
and positive n ≥ 2. However, in what follows, we will
be mainly interested in the case p = 2: it is singled out
as it allows for a superconformal and supergravity de-
scription, and arises as a consequence of a non-minimal
coupling to gravity. In particular, we will show that all
cosmological attractors can be brought to the form (6)
with a kinetic term that has a pole or order two at a lo-
cation where the scalar potential is perfectly smooth. In
other words, all attractors have a common denominator
in the Laurent expansion (7). In this case, the general
pole predictions (9) indeed lead to (2) with the identifica-
tion ap = 3

2α. This provides a unified approach to their
cosmological predictions, independent of the structure of
the inflationary potentials - provided these are smooth
at the point ρ = 0.

α-attractors. To demonstrate the equivalence of the
above to α-attractors, we start from the original for-
mulation of the theory of conformal attractors and α-
attractors [4–6] given in a non-canonical field φ as (3).
Its kinetic term has two poles of order two, related by
symmetry φ → −φ. Without loss of generality we will
focus on the pole located at φ =

√
6. Expanding around

this pole, we find a Laurent expansion

KE =
3α

2

1

(φ−
√

6)2
−
√

6α

4

1

φ−
√

6
+ . . . . (10)

Indeed we find the same leading pole of order two with
residue 3

2α, in addition to subleading terms. Similarly,
for a generic choice of the function f , the scalar potential
is a Taylor series around the point φ =

√
6.

By means of field redefinitions one can change the form
of the subleading terms, and trade certain subleading cor-
rections to others. For instance, in this case one can rede-
fine the field φ into a new variable ρ, such that the kinetic
term becomes only a pole in ρ, without additional terms.
This can be performed by

φ√
6

=
1− ρ
1 + ρ

. (11)

The Lagrangian of the α-attractor models (3) in the new
variables ρ has

KE =
3α

2

1

ρ2
, VE = αf2

(1− ρ
1 + ρ

)
. (12)
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Finally, one can go to a canonical field ϕ with
KE = 1, where the scalar potential reads VE =
αf2(tanh(ϕ/

√
6α)). For α = 1 and monomial functions

f they coincide with the T-models from the theory of
conformal attractors [4].

Note that the kinetic terms blows up at φ =
√

6α or
ρ = 0. While the subleading corrections are different,
both cases have the same leading term: this corresponds
to a pole of order two with residue 3α/2. It is this singu-
larity that is responsible for the stability of predictions
of these theories (2) with respect to strong deformations
of the inflationary potential near the boundary of the
moduli space at ρ = 0. Subleading corrections in either
the Laurent expansion of the kinetic term or the Tay-
lor expansion of the potential term are irrelevant in the
large-N limit.

In terms of the canonical scalar field, this boundary
is located at ϕ close to infinity. For generic functions
f , the scalar potential will asymptote to a plateau at
infinity and will have an exponentially suppressed fall-off

with leading term e−
√

2/3αϕ. It is this leading term that
determines all inflationary properties at large N .

Non-minimal coupling and special attractors.
Similarly, there is an interesting relation to ξ-attractors
based on a non-minimal coupling between the gravita-
tional and inflationary sector. Therefore we generalize
our starting point to the Jordan frame (4). By means of
a conformal transformation for Ω > 0, it can be brought
to the Einstein frame with

KE =

(
3Ω′2

2Ω2
+
KJ

Ω

)
, VE =

VJ(φ)

Ω2
. (13)

So far, only models with KJ = 1 have been considered,
where the parameter ξ was a part of the choice of the
function Ω(φ) in (4). Now we will define a new class of
theories, which we will call special attractors. They will
be defined by the following choice of functions in (4):

KJ =
1

4ξ

(Ω′)2

Ω
, VJ(φ) = Ω2 U(Ω) . (14)

Thus we absorbed the ξ dependence into the factor KJ.
Then the theory (4) in the Einstein frame becomes

LE =
√−g

[
R

2
− 3α

4

(
∂Ω

Ω

)2

− U(Ω)

]
, α ≡ 1 +

1

6ξ
.

(15)
In this theory Ω becomes the field variable. Its kinetic
term is exactly of the form (7) with a pole of order two
and no subleading corrections. However, physically this
does not correspond to the same limit: while the α at-
tractors derive their attractor predictions from the region
close to ρ = 0, inflation in the ξ-attractors takes place at
Ω very large. Therefore it is natural to identify

ρ(φ) = Ω−1(φ) . (16)

Note that a pole of order two is exactly invariant under
this redefinition and retains the same form.

In order for the kinetic energy to be well-defined, one
has to require that α is positive. There are three regions
of the parameter ξ; the condition α > 0 is satisfied in the
first two of them:

• ξ > 0, with α > 1, or

• −∞ < ξ < − 1
6 corresponding to 0 < α < 1, while

• Intermediate regions with −1/6 < ξ < 0 lead to a
wrong sign of the Einstein frame kinetic term.

The limiting case with α = 1 can be reached either in
the limit ξ → ∞ or ξ → −∞, while α = 0 is accessible
via ξ → −1/6 from below.

It is important to take stock of the situation at this
point. In particular, one can allow ξ to become negative
(and α smaller than one) at a very specific price: the
Jordan frame kinetic term (14) has the wrong sign. While
this could seem dangerous, for −∞ < ξ < − 1

6 this danger
is in fact fictitious as it does not lead to negative kinetic
terms and instability in the Einstein frame.

This phenomenon is reminiscent of the Breitenlohner-
Freedman bound in Anti-de Sitter space. In that case, an
apparent instability due to a negative mass can be cured
by the non-trivial geometry provided the mass satisfies
the BF bound [13]. In our case, an apparent instabil-
ity due to a negative kinetic energy can be cured by the
non-minimal coupling in Jordan frame, provided the co-
efficient 1/(4ξ) of the negative term in (14) is sufficiently
small such that α is positive.

One can represent the theory (15) in terms of a
canonically normalized inflaton field ϕ, defined by Ω =

e
√

2/3αϕ, as

LE =
√−g

[
R

2
− 1

2
(∂ϕ)2 − U

(
e
√

2
3αϕ
)]

(17)

For the special choice U(Ω) = αf2
(

1−Ω
1+Ω

)
, this theory

coincides with the class of α-attractors defined in (12),
with VE = αf2

(
tanh ϕ√

6α

)
. In particular, for the simplest

choice f(x) = cx, where c is some constant, one finds the
α-generalization of the simplest T-model potential [4, 6]

V = αc2 tanh2 ϕ√
6α

. (18)

For f(x) = cx
1+x , which is equivalent to the choice VJ =

c2(Ω− 1)2, one finds the α− β model [5]

V = αc2
(

1− e−
√

2
3αϕ
)2

, (19)

which generalizes the Starobinsky potential. More gen-
eral choices of potentials are possible, e.g. one can add
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to U(Ω) corrections

∆U(Ω) =

∞∑
i=2

ciΩ
−i =

∞∑
i=2

ciρ
i . (20)

This results in the subleading corrections in e
√

2
3αϕ,

which do not affect the inflationary predictions in the
large-N limit.

Induced inflation. Induced inflation is defined by (4)
with Ω = ξf(φ) and the scalar potential given by the
usual relation (5). This theory is well defined (i.e. de-
scribes gravity instead of antigravity) only for Ω > 0.
Without any loss of generality, one can define this class of
theories by requiring ξ > 0, f(φ) > 0. Then, independent
of the function f(φ), which in principle can be chosen ar-
bitrary, the inflationary predictions of this model coincide
with (1) in the limit of ξ → +∞ [8]. Moreover, in the op-
posite limit ξ → 0 the predictions approximate those of
quadratic inflation, again independent of the functional
choice [9].

Remarkably, for the special case Ω = ξφ2 and ξ > 0
the induced inflation model in the Einstein frame is also
represented by the special attractor action (15). In this
model VJ = λ

ξ2 (Ω− 1)2, and the Einstein frame potential

for α = 1 is given by (19) with c2 = λ/ξ2. This choice of
c2 here is not required, it was motivated by the desire to
implement the Higgs inflation scenario [8]. But the po-
tential (19) is different from the Higgs inflation potential
anyway: It is not symmetric with respect to the change
ϕ→ −ϕ and it does not contain an important part of the
potential at intermediate values of ϕ where the potential
is quartic in ϕ. However, it is important that it belongs
to the class of the special attractors. Moreover, it allows
for the same generalization (20) of the scalar potential.

Universal attractors. Finally, we wish to emphasize
how the universal attractor models of [7] are related to
α-attractors and spell out how they fit in the present
framework. The universal attractor models considered in
[7] are defined by the choice KJ = 1 and Ω = 1 + ξf(φ)
for an arbitrary function f(φ).

In the limit when ξ →∞ the inflationary predictions of
these models coincide with those of the induced models
with Ω ≈ ξf(φ), as well as those of special attractors
and α attractors for α ≈ 1. In this limit there is no need
to make a choice f(φ) = φ2 (as we did in the case of an
exact relation between α-models and generalized induced
inflation models above). In the limit ξ →∞, the second
term in (13) can be neglected and we find

KE =
3

2

1

ρ2
, VE =

λ

ξ2
(1− ρ)2 , (21)

where we have replaced the non-minimal coupling Ω(φ)
(which can be chosen arbitrarily) by its inverse ρ. Here
we see again that the pole structure at ρ = 0 allows us

to deform the potential and, instead of the function (5)
consider any function with additional terms with higher

powers of ρ = e−
√

2
3ϕ.

Moreover, one can calculate the subleading corrections
to the above kinetic term that arise for finite values of ξ.
For instance, in the case of Higgs inflation with f = φ2,
the full kinetic term for the field ρ is given by

KE =
3

2

1

ρ2
+

1

4ξ

1

(1− ρ)ρ2
=

3α

2

1

ρ2
+

1

4ξ

1

ρ
. . .+ . (22)

While this has the same leading pole, subleading correc-
tions will be different. A particularly acute difference
with respect to the case of induced inflation, discussed
in the previous subsection, is that the kinetic term is not
necessarily positive definite. In particular, inflation takes
place close to ρ = 0, while the Minkowski vacuum is lo-
cated at ρ = 1. In the latter regime, the second term will
always be dominant. Therefore Higgs inflation does not
allow one to take ξ negative even in the Einstein frame,
in contrast to induced inflation: in addition to the condi-
tion α > 0 from the inflationary regime, one also requires
ξ > 0 from the cosmological era following inflation.

Universal*a+ractors*
(including*Higgs*infla5on)*

Induced*infla5on*

⌦ = 1 + ⇠f(�)

⌦ = ⇠f(�)

Special*
a+ractors*

Conformal*a+ractors*
(including*Starobinsky*model*

and*TAmodels)*

↵ = 1

Equivalent*to*special*
a+ractors*with*

↵ = 1 + 1/6⇠

⇠ � models ↵� models
KJ =

1

4⇠

(⌦0)2

⌦

FIG. 1. Unification of cosmological attractors. The new class
of special attractors is defined by (14) and is fully equivalent
to α-attractors with α = 1 + 1

6ξ
.

Discussion. Provided the kinetic term of the inflaton is
given by a Laurent series, its inflationary predictions are
to a large extent determined by the properties of the lead-
ing pole, and therefore robust to changes to the sublead-
ing terms, either in the kinetic or the potential energy.
Such a pole of order two underlies the attractor proper-
ties of both α- and ξ-attractors and therefore yields the
inflationary predictions (2).

Next, we have explicitly demonstrated the unity of
these two types of attractors, either based on non-trivial
kinetic terms or on non-minimal couplings: when trans-
forming ξ-attractors from Jordan to Einstein frame, one
obtains α-attractors and vice versa. Moreover, we have
emphasized that there is a special type of attractors
whose kinetic term consists only of a single pole: both
the original α-attractors of [6] as well as induced inflation
[8] are of this form. This is illustrated in figure 1.
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The introduction of generalized ξ attractors including
the special attractors (14) opens a simple way towards
the unification of all presently known cosmological at-
tractors. We have shown that the class of the special at-
tractors is equivalent to α-attractors with α = 1+ 1

6ξ > 0.
This relation between both parameters, which is one of
our main results, embodies the two viable ranges ξ > 0
and ξ < −1/6. In the Jordan frame, only the first of
these has a positive kinetic term, corresponding to α ≥ 1.
However, similar to the Breitenlohner-Freedman bound,
the theory is well defined for both cases: It has positive
kinetic term in the Einstein frame and it does not exhibit
any instability. There is no theoretical lower bound on
r = 12α/N2 in this class of models.
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