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We study binary spinning black holes to display the long term individual spin dynamics. We
perform a full numerical simulation starting at an initial proper separation of d ≈ 25M between
equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and
half of a flip-flop cycle. The simulation lasts for t = 20000M and displays a total change in the
orientation of the spin of one of the black holes from initially aligned with the orbital angular
momentum to a complete anti-alignment after half of a flip-flop cycle. We compare this evolution
with an integration of the 3.5 Post-Newtonian equations of motion and spin evolution to show that
this process continuously flip-flops the spin during the lifetime of the binary until merger. We also
provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss
the effects this dynamics may have on spin growth in accreting binaries and on the observational
consequences for galactic and supermassive binary black holes.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

Introduction: Numerical relativity techniques are now
able to directly simulate binary black hole mergers [1–3].
In particular one can follow the dynamics of black hole
spins in an inspiral orbit down to the formation of the
final remnant black hole [4]. One of the most striking
results of those studies has been the discovery of very
large recoil velocities [5] acquired by the merger remnant,
up to 5000km/s [6] for hangup configurations.

It has been pointed out [7] that the presence of accret-
ing matter can align (or counter align) spins with the
orbital angular momentum thus reducing the recoil ve-
locities to a few hundred km/s [8]. Recent studies of
the tidal effects on tilted accretion disks around spinning
black holes find almost perfect alignments of the spins
with the orbital angular momentum [9, 10] on a shorter
time scale than that of gravitational radiation (for black
hole separations above a thousand gravitational radii).

While those studies have been performed on individual
black holes, we revisit this scenario to study the preces-
sion dynamics of black hole spins in a binary system.
In particular we are interested in the dynamics of polar
precession of each individual spin. We find a flip-flop
mode with periods shorter than the gravitational radia-
tion scale and with relatively high probability to occur
given generic (but comparable mass) initial configura-
tions. We briefly discuss the effects that this flip-flopping
spin could have on the inner accretion disk dynamics and
its potential observational consequences.

Full Numerical Evolution: In order to display the long
term dynamics of spinning binary black holes in General
Relativity we start a numerical simulation at a proper
separation d ≈ 25M . We study an equal mass binary
with different spin magnitudes and orientations. In par-
ticular, we choose one of the black holes as slowly spin-
ning with its spin ~S1 initially aligned with the orbital

angular momentum ~L, while the second highly spinning
black hole has spin ~S2 lying mostly along the orbital
plane, but slightly anti-aligned with ~L, such that the to-
tal spin ~S exactly lies in the orbital plane, i.e. ~S · ~L = 0.
These choices (See Table I) are for the sake of simplic-
ity of the analysis, and also provide a plausible scenario
where accretion has proceeded to align one of the black
holes with ~L and led to comparable masses by prefer-
ably accreting onto the initially smaller hole [11]. We
also choose the magnitude of the first black hole to be
smaller than that of the second, foreseeing (as discussed
later in this paper) that the flip-flopping spin neutralizes
(at least partially) the growth of intrinsic spin magni-
tudes, S1,2/m

2
1,2, by accretion.

We use the TwoPunctures thorn [12], a spectral nu-
merical code to generate initial “puncture” (no excision
of the horizon) data for the binary black hole simulations.
We evolve these initial data sets using the LazEv [13]
implementation of the moving puncture approach [2].
For the runs presented here, we use centered, eighth-
order finite differencing in space [14] and a fourth-order
Runge Kutta time integrator. Our code uses the Cac-
tus/EinsteinToolkit [15, 16] infrastructure for par-
allelization. We use the Carpet [17] mesh refinement
driver to provide a “moving boxes” style of mesh re-
finement. We locate the apparent horizons using the
AHFinderDirect code [18] and measure the horizon
spin using the isolated horizon algorithm detailed in [19].
For the computation of the radiated energy and linear
momentum we use the asymptotic formulas in [20] which
are expressed directly in terms of the Weyl scalar ψ4.

To complete the full evolution required 2.5 million ser-
vice units on 25 to 30 nodes of our local cluster “Blue
Sky” with dual Intel Xeon E5-2680 processors nearing
100M of evolution per day. Our evolution is free and we
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TABLE I. Initial data parameters and system details. The
punctures are located at ~r1 = (x1, 0, z) and ~r2 = (x2, 0, z),

with momenta P = ±(0, P, 0), spins ~S1 = (0, 0, S1z) and ~S2 =
(S2x, 0, S2z), mass parameters mp, horizon (Christodoulou)
masses mH , total ADM mass MADM, and dimensionless spins
α = a/mH = S/m2

H . The horizon masses and spins are given
after the gauge settles, and the errors in mH and α are deter-
mined by the drift in the quantity during the inspiral. Also
provided are the simple proper distance d, eccentricity at the
start of the inspiral ei, and eccentricity ef and the number of
orbits N just before merger.

x1/m x2/m z/m P/m d/m

10.73983 -10.76016 -0.01968 0.05909 25.37

mp
1/m mp

2/m S1z/m
2 S2x/m

2 S2z/m
2

0.48543 0.30697 0.05 0.19365 -0.05

MADM/m JADM/m
2 ei ef N

0.99472 1.2704344 0.0322 0.0006 48.5

mH
1 /m δmH

1 /m mH
2 /m δmH

2 /m

0.50000 0.00002 0.49974 0.00001

α1 δα1 α2 δα2

0.20003 0.00056 0.80088 0.00066

FIG. 1. Directional evolutions of the spins and angular mo-
mentum in the initial coordinate frame (left) and in the non-

inertial ~L frame (right). Color Keys: red L̂, green Ĵ , blue Ŝ1.

verify its accuracy by the satisfaction of the Hamiltonian
and Momentum constraints. All four L2-norm quantities
remain well below 10−8 until merger. Individual horizon
masses mH

1 and mH
2 are preserved to a level of 2 and 1.4

parts in 105 respectively until merger. Spins grow linearly
with time until merger by a total increase of 1.5× 10−4.
Thus the total increase of the intrinsic spin magnitudes
α1,2 = S1,2/m

2
1,2 are δα1 = 6× 10−4 and δα2 = 6× 10−4

from initial data to merger, as described in Table I.

The azimuthal precessional effect and polar flip-flop
can be directly seen in the evolution of the spin com-
ponents of the black holes represented over a sphere in
Fig. 1. The effect is apparent in the frame of the orbital
plane as well as the fixed initial set of coordinates.

Fig. 2 displays the angles that the (slower spinning)

black hole spin ~S1 forms with the precessing orbital an-

FIG. 2. The angle between the spin of the secondary (smaller

spin) black hole ~S1 with respect to the orbital angular momen-

tum ~L (left) and with respect to the fixed z-axis (right). For
comparison we also plot the 3.5PN prediction, which under-
estimates the flip of the angle at the latest stages of evolution
(merger).

gular momentum ~L or with the fixed ẑ-axis as a function
of time. Both start originally aligned and by the time
of merger both display an almost total flip, around 160◦.
Had we started the binary further separated apart this
spin would continue to flip-flop between complete align-
ment and counter alignment as described in the next sec-
tion using the Post-Newtonian (PN) approximation. We
also compare our results with the corresponding 3.5PN
integration of the equations of motion and spin evolu-
tion [21, 22]. We observe a long initial superposition
of the PN and full numerical precession curves corre-
sponding to the early 15000M of evolution, when the
the binary’s separations is above around 15M . As the
merger proceeds and the evolution becomes more dynam-
ical we observe larger deviations from each other, with
the numerical solution to General Relativity presenting
a stronger spin-flip effect.

Fig. 3 displays the leading waveform modes for the
strain. In the top panel is the characteristic chirp of
the (`,m) = (2, 2) mode, with an increasing amplitude
slightly modulated at around the orbital frequency due
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FIG. 3. The real part of the waveform strain for the modes
(`,m) = (2, 2) and (`,m) = (2, 1). While the former (top)
gives the leading chirping amplitude, the latter (bottom)
clearly displays the precession effect, completing nearly three
cycles during the t = 20000M of the simulation.

TABLE II. Remnant properties and recoil velocity. The final
mass and spin are measured from the horizon, and the recoil
velocity is calculated from the gravitational waveforms. The
error in the mass and spin is determined by the drift in those
quantities after the remnant settles down. The error in the
recoil velocity is the difference between first and second order
polynomial extrapolation to infinity.

Mrem/m |αrem| Vrecoil[km/s]

0.94904± 0.00000 0.70377± 0.00002 1508.49± 16.08

αx
rem αy

rem αz
rem

0.10815± 0.00003 −0.01986± 0.00000 0.69513± 0.00002

to the nutation of ~L around the total angular momentum
~J (See Fig. 1 in Ref. [23]). The lower panel shows the

azimuthal precessional effect of ~L on the amplitude of the
(2, 1) mode, showing (in a gauge invariant way) that we
evolved for nearly three precessional cycles (See Ref. [24]
for a first discussion relating this mode to precession in
full numerical simulations).

Table II displays the properties of the final black hole
remnant formed after merger. Notably, the recoil reaches
1500km/s, and the orientation of the final spin changes
by only 1.62 degrees with respect to the initial direction
of the total angular momentum, as expected for compa-
rable mass binaries [25, 26].

Post Newtonian spin dynamics: In order to provide an
analytic understanding of the flip-flop spin mode, we look
at the precession equations for the spins ~S1 and ~S2 with a
mass ratio q = m1/m2 to leading spin-orbit and spin-spin
couplings in the (2PN) post-Newtonian expansion [22]

d~S1

dt
=

1

r3

[(
2 +

3

2q

)
~L− ~S2 +

3(~S0 · n̂)

1 + q
n̂

]
× ~S1,

θ

β

L

S

S2

S1

γ

FIG. 4. Spin configurations ~S1 and ~S2 relative to the orbital
angular momentum ~L. Here ~S = ~S1 + ~S2.

d~S2

dt
=

1

r3

[(
2 +

3q

2

)
~L− ~S1 +

3q(~S0 · n̂)

1 + q
n̂

]
× ~S2, (1)

where ~n = ~r1 − ~r2 and

~S0 =

(
1 +

1

q

)
~S1 + (1 + q)~S2. (2)

For more details see the reviews in Refs. [27, 28].
For direct connection with the full numerical simula-

tion above we will consider here the equal mass case,
i.e. q = 1 and for the sake of simplicity, the conserva-
tive 2PN spin dynamics at fixed r. We next consider a
generic configuration of binary black holes with arbitrary
spins ~S1 and ~S2 at an angle β with respect to each other
and adding up to the vector ~S. For definiteness ~S1 is the
spin of the black hole 1 at an angle γ with respect to ~S
as shown in Fig. 4 and ~S2 is the spin of the black hole 2
identified with the larger spin magnitude S2.

From Eqs. (1) the magnitude of the individual spins
S1 and S2 are conserved as well as the magnitude of its
sum, S (This has been observed to be approximately true
in full nonlinear simulations of binary black holes solving
General Relativity field equations numerically [29]). It
follows that the following quantities are conserved:

~S · ~S = S2 = S2
1 + S2

2 + 2S1S2 cosβ = constant, (3)

~S · ~S1 = SS1 cos γ = S2
1 + S2S1 cosβ = constant. (4)

In turn, this leads to the conservation of β and γ during
the evolution of the binary. In particular we find that
~S1 oscillates around ~S between polar angles γ and −γ
(when it is both coplanar to ~S and ~L). We call this the
flip-flop angle

θff = θmax − θmin = 2γ, (5)

where

cos γ =
S1 + S2 cosβ√

S2
1 + S2

2 + 2S1S2 cosβ
=
S2 + S2

1 − S2
2

2SS1
. (6)

By decomposing the spin evolution equations (1)

along ~L and perpendicular to it, in the fashion of [26],
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Sec. IV.A, we obtain equations of the form d(~Si · L̂)/dt =

Ωff
~Si · L̂ + ... for i = 1, 2 and analogously for the per-

pendicular component of Si giving Ωp. From where we
can read-off the average polar and azimuthal oscillations
frequencies of the spin ~S1 (See also [30])

Ωff = 3
S

r3

[
1− 2 ~S · L̂

M3/2r1/2

]
, (7)

Ωp =
7L

2r3
+

2

r3
(~S · L̂). (8)

that we identify with the flip-flop and precession frequen-
cies respectively.

Note that the black hole 2 also oscillates at this Ωff

frequency, but with a smaller flip-flop angle (Since S2 >
S1) given by 2(β − γ) where

cos(β − γ) =
S2 + S2

2 − S2
1

2SS2
. (9)

Thus both spins, ~S1 and ~S2, oscillate around ~S which in
turn precess around ~L.

This oscillation of the spins represent a genuine spin-
flip in the sense that it is the same object that completely
changes its spin orientation. This is different from the
simple case where the final remnant spin has flipped di-
rection when compared to the spin of one of the individ-
ual orbiting black holes [31].

Discussion: In the scenario of binary black holes carry-
ing individual thin accretion disks (and possibly a com-
mon circumbinary disk), spins changing their orientation
can generate dramatic dynamical effects on the accreting
matter around them. For definiteness, we focus on the
black hole with spin ~S1 undergoing direction changes,
which when viewed in the orbital frame, resembles the
peeling of an orange (See Fig. 1). Due to the relatively
short time scale of flip-flop at close separations, the ac-
creting matter increases the black hole spin during half
the flip-flop period, but decreases it during the other half.
On the other hand, mass is always added to the black
holes during both the up and down states. The resulting
net effect is to lower the intrinsic spin magnitude, S1/m

2
1.

From Eqs. (6) and (7), which represent a good ap-
proximation for well separated binaries (r >> 100M),
requiring a flip-flop angle of 180◦ implies that γ = π/2
and Ωff = 3

√
S2
2 − S2

1/r
3. For a maximally spinning

hole 2 and a hole 1 with a relatively small spin at 1000M
of separation, we obtain a flip-flop period

Tff =
2π

Ωff
= 32, 700 yr

( r

1000M

)3( M

108M�

)
, (10)

which is shorter (by a factor of 40) than the gravitational
radiation periods reported in [9] used to compare with
the accretion-driven alignment mechanisms [32]. We thus
conclude that such alignment processes might be less ef-
fective than expected when the flip-flop of spins is taken
into account.

FIG. 5. The probability of a spin flip-flop angle θff ≥ x for
a given mass ratio q and assuming random spin orientations
and magnitudes of the primary and secondary black holes.

These flip-flop configurations might be very effective at
disrupting the inner accretion disk dynamics and at cir-
cumventing the spin alignment (and growth) process by
accretion, thus leading to important observational conse-
quences. For instance, the change of the location of the
internal rim of the disk due to the flip of the spin will
change the high frequencies end of fluctuations and the
electromagnetic spectrum due to changes in the efficiency
of the conversion of the accreting flow, i.e. proportional
to EISCO(± a). Flip-flopping spins might also generate
turbulent accretion by changing the stirring leading to
increase/decrease of the radiation (See [33]). These ex-
amples provide rough estimates of the disrupting effects
of a flip-flopping spin and a more accurate evaluation re-
quires a full numerical magnetohydrodynamic simulation
of such binary black hole configurations. Our full numer-
ical run proves that, although demanding, these simula-
tions are currently possible and they can be performed
adding a magnetohydrodynamic description of the mat-
ter on a dynamical binary black hole background [34].

The change in the spin orientation at the latest stage
of the merger could be followed through detailed obser-
vation of the gas jets in X-shaped radio galaxies [35].
The time scale for this phenomena, for instance, for the
∼ 25000M semiperiod we observe for the flip-flop in our
full numerical simulation, corresponds to 1.2 seconds for
10M� binaries and 142 days for 108M� binaries. Note
that according to Eq. (7) frequencies can be even higher
if the black hole 2 would be closer to maximally spinning.

To appreciate the astrophysical relevance of this phe-
nomenon it is important to determine the likelihood of
these flip-flop angles out of all possible generic binary
black hole merger configurations. We hence consider bi-
naries with different mass ratios, q, and initial random
spins α1, cos(θ1), α2, cos(θ2), with φ1 − φ2 = 0, π (this
last piece due to the resonances studied in [36–38]). We
evolve these configurations from separations r = 100M
down to r = 5M , representing merger, using the 3.5 post-
Newtonian approximation. The results of 2,922,656 sim-
ulations per q displaying the probability of a flip-flop an-
gle larger than x are summarized in Fig. 5. The spin-flip
angles remain large for comparable masses and this phe-
nomena may also occur, to a lesser extent, in black hole
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- neutron stars binaries. Note that accretion onto black
hole binaries tends to bring the mass ratio towards 1 be-
cause the smaller hole is further away from the center of
mass of the system and can sweep out more mass from
the internal parts of the circumbinary accretion disk [11].
The flip-flop frequency for large binary separations and
q 6= 1 is given by Ωff (q) ≈ (3/2)(1−q)/(1+q)(M/r)−5/2.
A thorough study of the unequal mass binary regime is
being completed and will be published by the authors
elsewhere.
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