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We show how to perform universal adiabatic quantum computation using a Hamiltonian which
describes a set of particles with local interactions on a two-dimensional grid. A single parameter in
the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We
bound the eigenvalue gap above the unique groundstate by mapping our model onto the ferromag-
netic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by
Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related
time-independent Hamiltonian which was shown by Janzing to be capable of universal computation.
We observe that in the limit of large system size, the time evolution is equivalent to the exactly
solvable quantum walk on Young’s lattice.

PACS numbers: 03.67.-a, 03.65.Vf, 03.67.Lx

Adiabatic quantum computation [1] is a computa-
tional model where one gradually converts a (efficiently-
preparable) groundstate of a simple Hamiltonian into a
(computationally useful) groundstate of another Hamil-
tonian using adiabatic evolution with a slowly changing
Hamiltonian.

This model was shown to be equivalent to the stan-
dard quantum circuit model [2] through the use of
the Feynman-Kitaev circuit-to-Hamiltonian construction
[3, 4]. Although the class of universal Hamiltonians orig-
inally considered (nearest neighbor interactions between
six dimensional particles in two dimensions) is not prac-
tically viable, perturbation gadget techniques [5, 6] were
later used to massage it into simpler forms [7, 8]. How-
ever, these techniques have the disadvantage of requiring
impractically high variability in the coupling strengths
which appear in the Hamiltonian (see, e.g., the analy-
sis in [9]). Given this state of affairs, it is of interest to
consider how to construct a universal adiabatic quantum
computer with a physically-plausible Hamiltonian with-
out using perturbative gadgets.

An alternative type of circuit-to-Hamiltonian mapping
which is conceptually distinct from the Feynman-Kitaev
construction has been used by some authors [10–16]. In
these works a quantum circuit is mapped to a Hamilto-
nian which acts on a Hilbert space with computational
and “local” clock degrees of freedom associated with ev-
ery qubit in the circuit. This idea was first explored
by Margolus in 1989 [10], just four years after Feyn-
man’s celebrated paper on Hamiltonian computation [3].
Margolus showed how to simulate a one-dimensional cel-
lular automaton by Schrödinger time evolution with a
time-independent Hamiltonian. More recently, Janzing
[11] presented a scheme for universal computation with
a time-independent Hamiltonian. In [14] it was claimed
that an approach along these lines can be used to per-
form universal adiabatic quantum computation; unfortu-

nately, the analysis presented by Mizel et al. does not
establish the claimed results. The local clock idea was
developed further in the recent “space-time circuit-to-
Hamiltonian construction” and was used to prove that
approximating the ground energy of a certain class of
interacting particle systems is QMA-complete [16].

Our main result is a new method which achieves ef-
ficient universal adiabatic quantum computation using
the space-time circuit-to-Hamiltonian construction. The
Hamiltonian we use describes a system of interacting par-
ticles which live on the edges of a two dimensional grid.
To prove that the resulting algorithm is efficient we use
a mapping from our Hamiltonian to the ferromagnetic
XXZ model with kink boundary conditions [17]. Our
work can be viewed as a carefully tuned adaptation of the
proposal from [11] to the quantum adiabatic setting. In
the final part of this work we turn our attention to Janz-
ing’s proposal for computation with a time-independent
Hamiltonian and we present a new analysis based on the
quantum walk on Young’s lattice.

Universal adiabatic quantum computation We con-
sider the universal circuit family used in reference [11]
and depicted in Fig. 1(a), i.e., 2n-qubit circuits which can
be schematically drawn as a rotated n × n grid (shown
in Fig. 1(b)) where each plaquette p on the grid corre-
sponds to a two-qubit gate Up. For technical reasons we
further restrict the circuit so that many of the gates are

fixed to be the identity; in particular, we set k =
√
n

16 and
select the rotated k×k subgrid with its left corner in the
center of the original lattice as the “interaction region”;
see Fig. 1(c). In this interaction region the gates Up are
unrestricted, elsewhere they are identity gates.

We map such a circuit to a Hamiltonian H(λ) which
depends on a single parameter λ ∈ [0, 1]. We will demon-
strate that (a) H(λ) has a unique groundstate for all
λ ∈ [0, 1], (b) the groundstate of H(0) can be efficiently
prepared, (c) The output of the quantum circuit is ob-
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tained with sufficiently high probability by performing a
simple measurement in the groundstate of H(1), and (d)
the eigenvalue gap above the ground energy of H(λ) is
lower bounded as 1

poly(n) for all λ ∈ [0, 1]. These prop-

erties allow us to efficiently simulate the given quantum
circuit using the quantum adiabatic algorithm with in-
terpolating Hamiltonian H(λ).

We consider a multi-particle Fock space where the par-
ticles live on the edges of the rotated n × n grid, and
each particle has a two dimensional internal degree of
freedom that encodes a qubit. For an edge with mid-
point that intersects horizontal and vertical coordinates
(t, w) (as shown in Fig. 1(b), these are unrotated coordi-
nates) we define an operator at,x[w] which annihilates a
particle on that edge with internal state x ∈ {0, 1}, and

a number operator nt,x[w] = a†t,x[w]at,x[w] which counts
the number of particles in this state. H(λ) is defined
using these operators and, as we will see, it conserves
the total number of particles on each horizontal line w.
We restrict our attention to the sector where there is ex-
actly one particle for each w ∈ {1, . . . , 2n}; for the rest
of this paper we work in this finite-dimensional Hilbert
space. The coordinate t can be viewed as a local time
variable (local, since different particles may be located
on edges with different values of t). For our purposes it
is irrelevant whether the particles are fermions, bosons or
distinguishable particles, since each particle never strays
from its horizontal line of edges.

For a gate Up with plaquette p bordered by edges
(t, w), (t+ 1, w), (t, w + 1), (t+ 1, w + 1), we define

Hp
prop = −

∑
α,β,γ,δ

(
〈β, δ|Up |α, γ〉 a†t+1,β [w]at,α[w]

a†t+1,δ[w + 1]at,γ [w + 1]
)

+ h.c.,

which allows nearest-neighbor particles to hop together.
When the particles are both located before (or after) the
plaquette, Hp

prop can map them onto being both located
after (or before) it, while their internal qubit degrees of
freedom are changed according to Up (or U†p). For each
λ ∈ [0, 1] we define a positive semidefinite operator

Hp
gate(λ) = nt[w]nt[w+1]+nt+1[w]nt+1[w+1]+λHp

prop,

where nt[w] = nt,0[w] + nt,1[w]. The Hamiltonian H(λ)
is built out of these gate operators as well as an operator
Hstring which ensures that the time variables for different
particles remain synchronized. Consider a state where
the 2n occupied edges of the grid form a connected string
with endpoints at the top and bottom (e.g., the red string
in Fig. 1(b)). Such a string can be represented by 2n bits
z = z1z2 . . . ...z2n, where 0 = / represents an edge going
down and to the left and 1 = \ is an edge going down
and to the right, with total Hamming weight wt(z) = n.
The subspace of the Hilbert space with this property can
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FIG. 1: A quantum circuit of the form shown in (a) (each
gray square is a two qubit gate) is mapped to a Hamiltonian
which describes a system of interacting particles that live on
the edges of the rotated grid shown in (b). In the groundstate,
the edges occupied by particles form a connected string, as
illustrated by the red line. (c) Many of the gates are fixed to
be the identity; the gates which are unrestricted correspond
to plaquettes within a k×k subgrid, the “interaction region”,
with left corner in the center of the grid (shown in black).

be identified [27] with the space

Sstring = span{|x〉|z〉 : x, z ∈ {0, 1}2n,wt(z) = n} (1)

where z describes the string and x represents the 2n-qubit
state encoded in the internal degrees of freedom. It is
clear that Sstring is an invariant subspace for each of the
gate operators Hp

gate(λ)–acting with these operators on a
state in Sstring can move the string forward (or backward)
and modify the internal state of the particles, but the
string remains connected and fixed at the bottom and
top of the grid. H(λ) will contain a term Hstring which
penalizes particle configurations which do not correspond
to connected strings; this will ensure that the groundstate
of H(λ) is in Sstring. We define Hstring =

∑
vH

v
string as a

sum of terms for each vertex in the grid, where, if vertex
v has four incident edges labeled (t, w), (t+ 1, w), (t, w+
1), (t+ 1, w + 1), we let

Hv
string = nt[w] + nt+1[w] + nt[w + 1] + nt+1[w + 1]

−2 (nt[w] + nt+1[w]) (nt[w + 1] + nt+1[w + 1]) . (2)

For vertices at the boundaries of the grid which have
degree < 4, this definition is modified so that it only in-
cludes operators for the edges which are present. Note
that Hstring ≥ 0 in the Hilbert space we are working in
(the space with exactly one particle per horizontal line),
and its nullspace is equal to Sstring. More generally, a
particle configuration corresponding to a set of occupied
edges which form L string segments which are discon-
nected from one another has energy 2L− 2, the number
of “loose ends”. In particular, the smallest nonzero eigen-
value of Hstring is 2.

We are now ready to define the Hamiltonian H(λ). For
λ ∈ [0, 1] we let

Hcircuit(λ) =
∑
p

Hp
gate(λ) +

√
1− λ2Hinit

H(λ) = Hstring +Hcircuit(λ) +Hinput,



3

where Hinit = nn+1[w = 1] + nn+1[w = 2n] is chosen
so that in the groundstate of H(0) all particles are lo-
cated at the left boundary of the grid, and Hinput =∑2n
w=1

∑
t≤n nt,1[w] ensures that the internal state of

each particle is correctly initialized to |0〉 when the parti-
cle is on the left-hand side of the grid. We now investigate
the groundspace of H(λ).

To begin, observe that Hstring commutes with each of
the plaquette operators Hp

prop [28] and also with each of
the number operators nt,z[w]. Thus [Hstring, H(λ)] = 0.
As noted above, the ground energy of Hstring is zero and
its first excited energy is 2. In the following we show that
the smallest eigenvalue of H(λ) within the space Sstring

is
√

1− λ2. Since
√

1− λ2 < 2 this establishes that the
corresponding eigenvector of H(λ) is the groundstate.

First consider H(0). Since
∑
pH

p
gate(0) has minimal

energy when the string is either 1n0n or zinit = 0n1n, and
since Hinit penalizes configurations where the first edge
of the string is \ or the last edge is /, we see that the
groundspace of Hcircuit(0)+Hstring (with eigenvalue 1) is
spanned by states |x〉|zinit〉. The term Hinput penalizes
all of these states except |02n〉|zinit〉 which is the unique
groundstate of H(0), with ground energy 1. Note that
our adiabatic quantum computation can be efficiently ini-
tialized since this state is easy to prepare.

To understand the groundspace of H(λ) when λ > 0,
it will be convenient to work with a different basis for the
space Sstring which builds in the details of the quantum
circuit. For any configuration of the string z ∈ {0, 1}2n
with wt(z) = n, let V (z) be the unitary equal to the prod-
uct of all the two-qubit gates associated with plaquettes
which lie to the left of the string. In other words V (z) is
the total unitary of the partially completed circuit with
boundary described by z. Define basis vectors

|x, z〉V = V (z)|x〉|z〉 x, z ∈ {0, 1}2n ,wt(z) = n (3)

which span Sstring. The action of Hcircuit(λ) in this basis
has a nice form: it acts nontrivially only on the string de-
gree of freedom; the two-qubit gates which make up the
circuit are “rotated away”. Moreover, its action on the
string register is equivalent (up to a term proportional to
the identity and a multiplicative constant) to the ferro-
magnetic XXZ chain with kink boundary conditions

V 〈x′, z′|
(
Hcircuit(λ)−

√
1− λ2I

)
|x, z〉V

= 2δx′,x〈z′|HXXZ(λ)|z〉 (4)

where [17] (writing X,Y, Z for the Pauli operators)

HXXZ(λ) =
1

4

√
1− λ2(Z2n − Z1)

− 1

4

2n−1∑
w=1

[(ZwZw+1 − I) + λ(XwXw+1 + YwYw+1)]

=

2n−1∑
w=1

|Ψq(λ)〉〈Ψq(λ)|w,w+1, λ =
2

q(λ) + q(λ)−1
, (5)

where 0 ≤ q(λ) ≤ 1 and the q-deformed singlet equals
|Ψq〉 = 1√

q2+1
(|10〉 − q|01〉). This spin chain can be

viewed as a q-analogue of the ferromagnetic Heisen-
berg chain; it has a remarkable SUq(2) quantum group
symmetry which is a deformation of the SU(2) symme-
try of the Heisenberg ferromagnet. Its spectral gap,
groundspace [17] and excitations are known [17, 18]. In
the Supplementary Material we derive an expression for
the zero energy groundstate of HXXZ(λ) in the sector
with Hamming weight n. Using this expression and (4)
we immediately obtain a spanning basis for the

√
1− λ2

energy groundspace of Hstring +Hcircuit(λ), given by (up
to normalization)

|Φλ(x)〉 =
∑

z : wt(z)=n

q(λ)−A(z)|x, z〉V x ∈ {0, 1}2n, (6)

where A(z) =
∑2n
j=1 jzj −

n(n+1)
2 is the area of the grid

which lies to the right of the string (and zj is the jth bit
of z). We see that when λ < 1 the associated probability
distribution over strings favors the left-hand side of the
grid; the most likely string is zinit = 0n1n (withA(zinit) =
n2), the least likely is 1n0n (with A(z) = 0), etc. The
term Hinput penalizes every state (6) except |Φλ(02n)〉,
which is the unique groundstate of H(λ), with energy√

1− λ2, for 0 < λ ≤ 1.
The groundstate |Φλ=1(02n)〉 of the final Hamiltonian

is a uniform superposition over basis vectors |02n, z〉V
corresponding to all possible configurations of the string
z. To obtain the output of the quantum circuit we mea-
sure the locations of the 2k particles which lie on hori-
zontal lines that intersect the interaction region. If we
find that all of these particles are located on edges to the
right of the interaction region then their internal degrees
of freedom give the output of the quantum circuit. Since
the string is connected, this is guaranteed to occur as
long as the nth particle (i.e., the particle on horizontal
line w = n) is located on an edge which lies to the right
of the interaction region. In the Supplementary Mate-

rial we show that, with our choice k =
√
n

16 , this occurs
with probability lower bounded by a positive constant.
Finally, we lower bound the eigenvalue gap of H(λ).

Theorem 1. The smallest nonzero eigenvalue of
H(λ)−

√
1− λ2I is at least 1

4n+3 (1− λ cos
(
π
2n )
)
for all

λ ∈ [0, 1].

This Ω(n−3) bound establishes that the adiabatic
quantum computation can be performed efficiently. The
proof, given in the Supplementary Material, uses the
known expression for the eigenvalue gap of HXXZ(λ) and
a Lemma for bounding the smallest nonzero eigenvalue
of an operator sum.

In an attempt to improve the success probability of
a final measurement, one might consider modifying this
scheme so that the groundstate of the final Hamilto-
nian is localized at the right side of the grid. This
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can be achieved by adding another segment to the adi-
abatic path: after reaching H(1), replace Hinit with
Hendit = nn[w = 1]+nn[w = 2n] and then reduce λ from
1 to 0. With this choice, every state in the groundspace
of the final Hamiltonian has particle configuration corre-
sponding to the string 1n0n on the far right. However the
groundspace is degenerate (sinceHinput|x, 1n0n〉V = 0 for
all computational input states x). Although the error-
free Hamiltonian has a symmetry which prevents transi-
tions between the groundstate corresponding to the cor-
rect input and the other wrong-input states, an imperfect
realization could potentially derail the computation.

Universal computation with a time-independent Hamil-
tonian We now discuss a bare-bones version of the re-
lated scheme from [11]. The quantum circuit family is the
same as before, except that now the interaction region is
chosen to be the first K2 gates in the circuit with K = n

4 ,
i.e., the K×K subgrid at the far left side of the n×n grid.
The circuit is simulated using Schrödinger time evolu-
tion with initial state |02n, zinit〉V and time-independent
Hamiltonian Hprop =

∑
pH

p
prop. After evolving for time

t, one measures the location of each particle and if one
finds them all outside the interaction region then the in-
ternal degrees of freedom give the output of the circuit.
Janzing’s analysis of this scheme is based on an equiva-
lence between Hprop and the XY model, which can be
diagonalized using a Jordan-Wigner transformation (a
unitary mapping to a system of noninteracting fermions
in one dimension). In the Supplementary Material we ex-
tend one of Janzing’s Theorems to prove that the above
scheme efficiently simulates a quantum circuit. Specifi-
cally we prove that, if the evolution time t is randomly
(uniformly) chosen in the interval [0, T ] with T = cn3 (for
some constant c), the probability to measure all the par-
ticles outside the interaction region is at least 1

4 +O( 1√
n

).

Here we focus on the limit n → ∞ and directly ana-
lyze the time evolution in the given basis without using a
Jordan-Wigner transformation. In this way we obtain a
detailed picture of the dynamics of the string. To begin,
note that a string is associated with a Young diagram
(or, equivalently, an integer partition) obtained by rotat-
ing the portion of the grid which lies to the left of the
string by 45 degrees. In the limit n→∞, the set of string
configurations is in one-to-one correspondence with the
set of Young diagrams. In the basis (3), Hprop acts non-
trivially only on the string degree of freedom and it acts
on this space as −HY, where HY is the adjacency matrix
of Young’s lattice, shown in Fig. 2. In this infinite graph
two Young diagrams are connected by an edge if they
differ by one box. The dynamics of our system is given
by the quantum walk on Young’s lattice starting from a
very special initial state: the empty partition ∅. This
quantum walk can be solved exactly [19]; the solution is

eiHYt|∅〉 = e−
t2

2

∞∑
m=0

(it)m√
m!
|φm〉, (7)

∅

...
...

...
...

...

1

FIG. 2: Young’s lattice.

where the normalized state |φm〉 = 1√
m!

∑
σam dσ|σ〉,

σ a m indicates that σ is a partition of m, and dσ is the
dimension of the irreducible representation of the sym-
metric group Sm associated with σ (given by the hook-
length formula). For completeness, in the Supplementary
Material we review the derivation of equation (7).

We see that the quantum walk takes place in a
tiny subspace of the full Hilbert space spanned by
{|φm〉 : m ≥ 0}. The probability distribution over par-
titions σ as a function of time is given by p(σ, t) =

(m!)−2e−t
2

t2md2σ (where σ a m) which is a Poissonized
Plancherel measure [20]. The marginal distribution of m
is Poisson with mean and variance E[m] = Var(m) = t2.
In our case m represents the area to the left of the string
(i.e., the number of gates that have been applied) and
this shows that, roughly speaking, this area increases
quadratically. For large times the random variable m

is peaked about its mean in the sense that

√
Var(m)

E[m] is

small. The conditional distribution over partitions λ ` m
for fixed m is the widely studied Plancherel measure

ρm(σ) =
d2σ
m! , which is known to exhibit a limiting be-

haviour [21]. Imagine sampling a partition from ρm,
drawing it in the x-y plane and then rescaling both axes
by 1√

m
. As m → ∞, the resulting picture approaches a

fixed shape with probability → 1 [20, 21] (we include
a plot of this shape in the Supplementary Material).
Roughly speaking, for large times we envision the string
as a wavefront which moves with constant speed and with
scaled shape described by this limit theorem.

Finally, note that although it was convenient to con-
sider the limit n → ∞, we expect this analysis to be
approximately valid for finite n when t is small enough
so that (7) is supported almost entirely on partitions con-
tained in the left-hand side of the rotated n× n grid.
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