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Bell’s Theorem shows that quantum mechanical correlations can violate the constraints that the
causal structure of certain experiments impose on any classical explanation. It is thus natural to
ask to which degree the causal assumptions – e.g. locality or measurement independence – have
to be relaxed in order to allow for a classical description of such experiments. Here, we develop
a conceptual and computational framework for treating this problem. We employ the language of
Bayesian networks to systematically construct alternative causal structures and bound the degree
of relaxation using quantitative measures that originate from the mathematical theory of causality.
The main technical insight is that the resulting problems can often be expressed as computationally
tractable linear programs. We demonstrate the versatility of the framework by applying it to
a variety of scenarios, ranging from relaxations of the measurement independence, locality and
bilocality assumptions, to a novel causal interpretation of CHSH inequality violations.

The paradigmatic Bell experiment [1] involves two dis-
tant observers, each with the capability to perform one
of two possible experiments on their shares of a joint sys-
tem. Bell observed that even absent of any detailed infor-
mation about the physical processes involved, the causal
structure of the setup alone implies strong constraints on
the correlations that can arise from any classical descrip-
tion [2]. The physically well-motivated causal assump-
tions are: (i) measurement independence: experimenters
can choose which property of a system to measure, in-
dependently of how the system has been prepared; (ii)
locality : the results obtained by one observer cannot be
influenced by any action of the other (ideally space-like
separated) experimenter. The resulting constraints are
Bell’s inequalities [1]. Quantum mechanical processes
subject to the same causal structure can violate these
constraints – a prediction that has been abundantly ver-
ified experimentally [3]. This effect is commonly referred
to as quantum nonlocality.

It is now natural to ask how stable quantum nonlocal-
ity is with respect to relaxations of the causal assump-
tions. Which degree of measurement dependence, e.g.,
is required to reconcile empirically observed correlations
with a classical and local model? Such questions are not
only, we feel, of great relevance to foundational questions
– they are also of interest to practical applications of non-
locality, e.g. in cryptographic protocols. Indeed, eaves-
droppers can (and do [4]) exploit the failure of a given
cryptographic device to be constrained by the presumed
causal structure to compromise its security. At the same
time, it will often be difficult to ascertain that causal as-
sumptions hold exactly – which makes it important to
develop a systematic quantitative theory.

Several variants of this question have recently at-
tracted considerable attention [5–13]. For example, mea-
surement dependence has been found to be a very strong
resource: only about about 1/15 of a bit of correlation
between the source and measurements is sufficient to re-

produce all correlations obtained by projective measure-
ments on a singlet state [7, 9]. In turn, considering re-
laxations of the locality assumption, one bit of commu-
nication between the distant parties is again sufficient to
simulate the correlations of singlet states [5].

In this paper we provide a unifying framework for
treating relaxations of the measurement independence
and locality assumptions in Bell’s theorem. To achieve
this, we borrow several concepts from the mathematical
theory of causality, a relatively young subfield of prob-
ability theory and statistics [14, 15]. With the aim of
describing the causal relations (rather than mere corre-
lations) between variables that can be extracted from
empirical observations, this community has developed a
systematic and rigorous theory of causal structures and
quantitative measures of causal influence.

Our framework rests on three observations: (i) Al-
ternative causal structures can systematically be repre-
sented graphically via Bayesian networks [14]. There,
variables are associated with nodes in a graph, and
directed edges represent functional dependencies. (ii)
These edges can be weighted by quantitative measures
of causal influence [14, 16]. (iii) Determining the mini-
mum degree of influence required for a classical explana-
tion of observable distributions can frequently be cast as
a computationally tractable linear program.

The versatility of this framework is demonstrated in
a variety of applications. We give an operational mean-
ing to the violation of the CHSH inequality [17] as the
minimum amount of direct causal influence between the
parties required to reproduce the observed correlations.
Considering the Collins-Gisin scenario [18], we show that
quantum correlations are incompatible with a classical
description, even if we allow one of the parties to com-
municate its outcomes. We also show that the results in
[7, 9] regarding measurement-independence relaxations
can be improved by considering different Bell scenarios.
Finally, we study the bilocality assumption [19] and show
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that although it defines a non-convex set, its relaxation
can also be cast as a linear program, naturally quantify-
ing the degree of nonbilocality.

Bayesian networks and measures for the relaxation
of causal assumptions— The causal relationships be-
tween n jointly distributed discrete random variables
(X1, . . . , Xn) are specified by means of a directed acyclic
graph (DAG). To this end, each variable is associated
with one node of the graph. One then says that the Xi’s
form a Bayesian network with respect to the graph, if
every variable can be expressed as a deterministic func-
tion Xi = fi(PAi, Ni) of its graph-theoretic parents PAi

and an unobserved noise term Ni, such that the Ni’s are
jointly independent. This is the case if and only if the
probability p(x) = p(x1, . . . , xn) is of the form

p(x) =

n∏
i=1

p(xi|pai). (1)

This identity encodes the causal relationships implied by
the DAG [14].

As a paradigmatic example of a DAG, consider a bi-
partite Bell scenario (Fig. 1a). In this scenario, two
separated observers, Alice and Bob, each perform mea-
surements according to some inputs, here represented by
random variables X and Y respectively, and obtain out-
comes, represented by A and B. The causal model in-
volves an explicit shared hidden variable Λ which me-
diates the correlations between A and B. From (1)
it follows that p(x, y, λ) = p(x)p(y)p(λ), which reflects
the measurement independence assumption. It also fol-
lows that a = fA(x, λ, nA), b = fB(y, λ, nB). We incur
no loss of generality by absorbing the local noise terms
NA, NB into Λ and will thus assume from now on that
a = fA(x, λ), b = fB(y, λ) for suitable functions fA, fB .
This encodes the locality assumption. Together, these re-
lations imply the well-known local hidden variable (LHV)
model of Bell’s theorem:

p(a, b|x, y) =
∑
λ

p(a|x, λ)p(b|y, λ)p(λ). (2)

Causal mechanisms relaxing locality (Fig. 1b–d) and
measurement independence (Fig. 1e) can be easily ex-
pressed using Bayesian networks. The networks them-
selves, however, do not directly quantify the degree of
relaxation. Thus, one needs to devise ways of checking
and quantifying such causal dependencies. To define a
sensible measure of causal influence we introduce a core
concept from the causality literature – interventions [14].

An intervention is the act of forcing a variable, say Xi,
to take on some given value x′i and is denoted by do(x′i).
The effect is to erase the original mechanism fi(pai, ni)
and place Xi under the influence of a new mechanism
that sets it to the value x′i while keeping all other func-
tions fj for j 6= i unperturbed. The intervention do(x′i)

(a) Bipartite	Bell (b) Rel.	of	locality (c) Rel.	of	locality

(d) General	comm. (e) Rel.	of	meas.	ind. (f) Bilocality

FIG. 1. (a) LHV model for the bipartite Bell scenario. (b) A
relaxation of locality, where A may have direct causal influ-
ence on B. (c) Another relaxation in which X may have direct
causal influence on B. (d) The most general communication
scenario from Alice to Bob. (e) A relaxation of measurement
independence. (f) The bilocality scenario for which the two
sources Λ1 and Λ2 are assumed to be independent.

changes the decomposition (1), given by [20]

p(x|do(x′i)) =

{ ∏n
j 6=i p(xj |paj) if xi = x′i,

0 otherwise.
(3)

Considering locality relaxations, we can now define a
measure CA→B for the direct causal influence of A into
B for the model in Fig. 1b:

CA→B = sup
b,y,a,a′

∑
λ

p(λ)|p(b|do(a), y, λ)−p(b|do(a′), y, λ)|.

(4)
It is the maximum shift (averaged over the unobservable
Λ) in the probability of B caused by interventions in A.
Similarly, one can define CX→B for the DAG in Fig. 1c
and in other situations. This measure is strictly larger
than zero for any underlying causal influence, as opposed
to variations of it, such as the widely used average causal
effect that can be null even in the presence of causal
influences [16]. We are also interested in relaxations of
measurement independence. Considering the case of a
bipartite scenario (illustrated in Fig. 1e and that can be
easily extended to multipartite versions), we can define
the measure

MX,Y :λ =
∑
x,y,λ

|p(x, y, λ)− p(x, y)p(λ)|. (5)

This can be understood as a measure of how much the
inputs are correlated with the source, i.e. how much the
underlying causal model fails to comply with measure-
ment independence. In the following we focus on the
case where p(x, y) = p(x)p(y), as usual in a typical Bell
scenario.

The linear programming framework—Given some ob-
served probabilities and a particular measure of relax-
ation, our aim is to compute the minimum value of the
measure compatible with the observations. As sketched
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below and fully detailed in the Supplemental Material
[21], this leads to a tractable linear program.

For simplicity we consider the usual Bell scenario of
Fig. 1a. The most general observable quantity is the joint
distribution p(a, b, x, y) = p(a, b|x, y)p(x)p(y). Since we
control the “inputs” X and Y , their distribution car-
ries no information and we may thus restrict attention
to p(a, b|x, y). This conditional probability is, in turn,
a linear function of the distribution of Λ. To make this
explicit, represent p(a, b|x, y) as a vector p with com-
ponents pj labeled by the multi-index j = (a, b, x, y).
Similarly, identify the distribution of Λ with a finite vec-
tor [21] with components qλ = p(Λ = λ). Then from
the discussion above, we have that p = Tq where T is
a matrix with elements Tj,λ = δa,fA(x,λ)δb,fB(y,λ). Con-
ditional expectations that include the application of a
do-operation are obtained via a modified T matrix. E.g.,
q′j = p(a, b|x, y, do(a′)) = T ′q for T ′j,λ = δa,a′δb,fB(y,λ).
The measures C and M are easily seen to be convex
functions of the conditional probabilities p(a, b|x, y) and
their variants arising from the application of do’s – and
thus convex functions of q. Hence their minimization
subject to the linear constraint Tq = p for an empir-
ically observed distribution p is a convex optimization
problem. This remains true if only some linear function
V p = V Tq (e.g. a Bell inequality) of the distribution p
is constrained. The problem is not manifestly a (compu-
tationally tractable) linear program (LP), since neither
objective function is linear in q. However, we establish
in [21] that it can be cast as such:

Theorem 1. The minimization of the measures C and
M over models involving only one independent hidden
variable, subject to any linear observation, can be refor-
mulated as a primal linear program (LP). Its solution is
equivalent to

max
1≤i≤K

〈vi, V p〉, (6)

where the {vi}Ki=1 are the vertices of the LP’s dual feasible
region.

We highlight that (6) is a closed-form expression in
the observations V p: It is a maximum over finitely many
explicit linear functions V p 7→ 〈vi, V p〉. In this way, our
result goes significantly beyond previous approaches [8–
11], where generally only information about the degree
of violation of a specific Bell inequality is utilized. In the
following sections, we apply our framework to a variety
of applications.

Novel causal interpretation of the CHSH inequality—
Intuitively, the more nonlocal a given distribution is,
the more direct causal influence between Alice and Bob
should be required to simulate it. We make this intu-
ition precise by considering the models in Fig. 1b–c and
the CHSH scenario (two inputs, two outputs for Alice

and Bob). For any observed distribution p(a, b|x, y), we
establish in [21] that

(1/2) min CA→B = min CX→B = max [0,CHSH] , (7)

where the maximum is taken over all the eight symme-
tries of the CHSH quantity [17]

CHSH = p(00|00) + p(00|01) + p(00|10)

− p(00|11)− pA(0|0)− pB(0|0),
(8)

where the last two terms represent the marginals for Alice
and Bob. The CHSH inequality stipulates that for any
LHV model, CHSH ≤ 0. Eq. (7) shows that, regardless
of the particular distribution, the minimum direct causal
influence is exactly quantified by the CHSH violation.

Inspired by the communication scenario of [5] (Fig. 1d)
and the operational interpretation of CHSH violation
given in [6], we can also quantify the relaxation of the
locality assumption as the minimum amount of communi-
cation required to simulate a given distribution. We mea-
sure the communication by the Shannon entropy H(m)
of the message m which is sent. For a binary message,
we can use our framework to prove, in complete analogy
to (7), that

minH(m) = h(CHSH) (9)

if CHSH > 0 and 0 otherwise. Here h(v) = −v log2 v −
(1 − v) log2(1 − v) denotes the binary entropy. We note
that for maximal quantum violation CHSH = 1/

√
2−1/2,

as produced by a singlet state, a message with H(m) ≈
0.736 bits is required. This is less than the ≈ 0.85 bits of
communication (after compression) required by the pro-
tocol of [5] for reproducing arbitrary correlations of a
singlet.

Quantum nonlocality is incompatible with some local-
ity relaxations— Given that violation of CHSH can be
directly related to relaxation of locality, one can ask,
whether similar interpretations exists for other scenar-
ios. For example, we can consider a setting with three
inputs and two outputs for Alice and Bob, and consider
the causal model in Fig. 1b. Similar to the usual LHV
model (2), the correlations compatible with this model
form a polytope. One facet of this polytope is

〈E00〉− 〈E02〉− 〈E11〉+ 〈E12〉− 〈E20〉+ 〈E21〉 ≤ 4, (10)

where Exy = 〈AxBy〉 =
∑
a,b(−1)a+bp(a, b|x, y). This

inequality can be violated by any quantum state |ψ〉 =√
ε|00〉 +

√
(1− ε)|11〉 with ε 6= 0, 1. Consequently, any

pure entangled state – no matter how close to separable
– generates correlations that cannot be explained even
if we allow for a relaxation of the locality assumption,
where one of the parties communicates its measurement
outcomes to the other.

How much measurement dependence is required to
causally explain nonlocal correlations?— The results in
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Refs. [7, 9] show that measurement dependence is a very
strong resource for simulating nonlocality. In fact, a mu-
tual information as small as I(X,Y : λ) ≈ 0.0663 is al-
ready sufficient to simulate all correlations obtained by
(any number of) projective measurements on a singlet
state [9]. Given the fundamental implication and prac-
tical relevance of increasing these requirements, we aim
to find larger values for I(X,Y : λ) by means of our
framework. The result of [9] leaves us with three options,
regarding the quantum states: either non-maximally en-
tangled states of two qubits, two-qudit states, or states
with more than two parties.

Regarding non-maximally entangled two-qubit states,
we were unable to improve the minimal mutual informa-
tion. Regarding qudits, we have considered relaxations
in the CGLMP scenario [29] – a bipartite scenario, where
Alice and Bob each have two inputs and d outcomes. The
CGLMP inequality is of the form Id ≤ 2. We have eval-
uated the LP for minM in the setting of Fig. 1e, for
various values of Id and up to d = 8. The numerical
results strongly suggest that the simple relation

minM = max [0, (Id − 2)/4] (11)

holds. Via the Pinsker inequality [30, 31] and the defini-
tion of mutual information (see eq. (1) in [31] for further
details), (11) provides a lower bound on the minimum
mutual information I(X,Y : Λ) ≥ M2 log2 e/2. This
bound implies that for any Id ≥ 3.214, the mutual infor-
mation required exceeds the 0.0663 obtained in Ref. [9].
Using the results in Ref. [32] for the scaling of the opti-
mal quantum violation with d, one sees that this requires
d ≥ 16. However, we note that the bounds provided by
the Pinsker inequality are usually far from tight, leaving
a lot of room for improvement. Moreover a corresponding
upper bound (obtained via the solution to the minimiza-
tion of M) is larger than the values obtained in [9] as
soon as d ≥ 5. Though this upper bound is not neces-
sarily tight, we highlight the fact that for d = 2 it gives
exactly I(X,Y : Λ) = 0.0463, the value analytically ob-
tained in [9].

Regarding multipartite scenarios, we have considered
GHZ correlations [33] in a tripartite scenario where each
party has two inputs and two outputs. We numerically
observe 0.090 ≤ I(X,Y, Z : λ) ≤ 0.207. This implies
that increasing the number of parties can considerably
increase the measurement dependence requirements for
reproducing quantum correlations.

Bilocality scenario— To illustrate how our formalism
can be used in generalized Bell scenarios [19, 34, 35], we
briefly explore the entanglement-swapping scenario [36]
of Fig. 1f (see details in [21]). The hidden variables in
this scenario are independent p(λ1, λ2) = p(λ1)p(λ2), the
so-called bilocality assumption [19].

As in Ref. [19], we take the inputs x, z and outputs
a, c to be dichotomic while b takes four values which

we decompose in two bits as b = (b0, b1). The dis-
tribution of hidden variables can be organized in a 64-
dimensional vector q with components qα0,α1,β0,β1,γ0,γ1 ,
where αx specifies the value of a for a given x (and anal-
ogously for γ, c and z) and βi specifies the value of bi.
Thus together the indices label all the deterministic func-
tions for A, B, C given their parents. As shown in [19],
bilocality is equivalent to demanding qacα0,α1,γ0,γ1 =
qaα0,α1

qcγ0,γ1 , where qacα0,α1,γ0,γ1 =
∑
β0,β1

qα0,α1,β0,β1,γ0,γ1

is the marginal for AC. Similar to (5) a natural measure
MBL of nonbilocality quantifies by how much the under-
lying hidden variable distribution fails to comply with
this constraint:

MBL =
∑

α0,α1,γ0,γ1

|qacα0,α1,γ0,γ1 − q
a
α0,α1

qcγ0,γ1 |. (12)

Clearly MBL = 0, if and only if bilocality is fulfilled.
However, demanding bilocality imposes a quadratic con-
straint on the hidden variables. This results in a non-
convex set which is extremely difficult to characterize
[19, 34, 35]. Nevertheless, our framework is still useful, as
using the marginals for a given observed distribution to
constrain the problem further, the minimization ofMBL

can be cast in terms of a linear program with a single
free parameter, which is further minimised over.

As an illustration we consider the nonbilocal distri-
bution found in Refs. [19]. It is obtained by projective
measurements on a pair of identical two-qubit entangled
states % = v|Ψ−〉〈Ψ−| + (1 − v)I/4. This distribution
violates the bilocality inequality B =

√
|I| +

√
|J | ≤ 1

giving a value B =
√

2v. Using our framework we nu-
merically observe MBL = max(2v2 − 1, 0). Thus, for
this specific distribution (and up to numerical precision),
MBL = B2 − 1, so there is a one-to-one correspondence
between the violation of the bilocality inequality and the
minimum relaxation of the bilocality constraint required
to reproduce the correlations. This assigns an opera-
tional meaning to B.

Conclusion— In this work we have revisited nonlocal-
ity from a causal inference perspective and provided a
linear programming framework for relaxing the measure-
ment independence and locality assumptions in Bell’s
theorem. Using the framework, we have given a novel
causal interpretation of violations of the CHSH inequal-
ity, and shown that quantum correlations are still incom-
patible with classical causal models even if one allows for
the communication of measurement outcomes. This im-
plies that quantum nonlocality is even stronger than pre-
viously thought. Also, we have shown that the minimal
measurement dependence required to simulated nonlocal
correlations can be improved by considering different Bell
scenarios. Finally we showed how our framework can be
extended to treat the non-convex problem arising in the
bilocality scenario. In particular, based on numerical ev-
idence for a specific class of nonbilocal distributions, we
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have conjectured an operational meaning for the bilocal-
ity inequality.

In addition to these results, we believe the generality
of our framework motivates and, more importantly, pro-
vides a basic tool for future research. For instance, it
would be interesting to understand how our framework
can be generalized in order to derive useful inequalities in
the context of randomness expansion [10] Another nat-
ural possibility would be to look for a good measure of
genuine multipartite nonlocality [37]. Finally, it would be
interesting to understand how our treatment of the bilo-
cality problem could be generalized and applied to the
characterization of the non-convex compatibility regions
of more complex quantum networks [34, 37, 38].
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