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We study a mixture of spin-1 bosonic and spin-1/2 fermionic cold atoms, e.g., 87Rb and 6Li,
confined in a triangular optical lattice. With fermions at 3/4 filling, Fermi surface nesting leads
to spontaneous formation of various spin textures of bosons in the ground state, such as collinear,
coplanar and even non-coplanar spin orders. The phase diagram is mapped out with varying boson
tunneling and Bose-Fermi interactions. Most significantly, in one non-coplanar state the mixture
is found to exhibit a spontaneous quantum Hall effect in fermions and crystalline superfluidity in
bosons, both driven by interaction.
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Introduction. Searching for topological states of
quantum matter, such as quantum Hall states and
topological insulators, is one of the most important
directions in ultracold atoms. To achieve such novel
states in a charge neutral system, external manipulations
to synthesize effective gauge fields [1] have been
carried out, for example, by rotating the system [2],
using Raman laser field coupling schemes [3–11], or
shaking the lattice [12–15]. At present the realization
of topological states has remained an experimental
challenge. An alternative route is to have fermions
move in a spontaneous spin texture background, which
can be stabilized by Ruderman-Kittel-Kasuya-Yosida
(RKKY) interactions in classical Kondo lattice models
(CKLM) [16–21]. For example, a triple-Q magnetic
ordering is favored in a triangular lattice at 3/4 Fermi
filling and it leads to a quantum Hall effect [19,
20]. However, what atomic systems can support such
mechanism is an open question.

In this Letter, we show that topologically nontrivial
spin textures and a quantum Hall effect can be naturally
realized in an atomic mixture of spin-1 bosons and spin-
1/2 fermions, e.g., 87Rb and 6Li, loaded into a two-
dimensional triangular optical lattice. Spin-1 bosonic
87Rb atoms with a ferromagnetic interaction [22, 23]
provide large local moments, i.e., effective classical spins,
when they are condensed. Interspecies spin-changing
collisions between Rb and Li atoms give rise to a spin-
exchange interaction, which plays the role of a Kondo
coupling. Performing a self-consistent mean field study
for the ground state of the system at 3/4 Fermi filling, we
find various topologically distinct spin textures such as
collinear, coplanar and non-coplanar. While the RKKY
mechanism is thus confirmed to play an important
role, the spinor Bose-Fermi mixture model actually
contains important ingredients beyond the description

of CKLM. Two key ones are the number fluctuation of
bosons and Bose-Fermi density interactions, which are
responsible for the following richer quantum phenomena
beyond the scope of CKLM. Due to effective gauge
fields in the non-coplanar state, bosons are predicted
to condense at a finite momentum leading to chiral
superfluidity. The novel chirality of bosons is not
only interesting by itself but also provides experimental
fingerprints for the emergence of gauge fields in time-of-
flight measurements. Moreover, several spin texture and
even ferromagnetic states are accompanied by density
wave (DW) orders which are attributed to Bose-Fermi
density interactions [24].
Spinor Bose-Fermi mixture. Consider a mixture of

spin-1 bosonic and spin-1/2 fermionic cold atoms. There
will be the usual density and spin interactions between
two particles in the same species [25, 26]. The crucial new
ingredient is the interaction between the species of bosons
and fermions, which is described by the contact pseudo-

potential Vbf (r1 − r2) =
(

g1/2P̂1/2 + g3/2P̂3/2

)

δ(r1 −
r2), where gFtot

= 2π~2aFtot
/mbf , aFtot

is the s-wave

scattering length in the channel of total spin Ftot, P̂Ftot

is the corresponding projection operator, and mbf is the

reduced mass. Based on the identity 2Ŝ·F̂ = P̂3/2−2P̂1/2

[25], where Ŝ and F̂ are the one-particle vector spin for
spin-1/2 and spin-1 atoms, respectively. The Bose-Fermi
contact interaction can be rewritten as

Vbf (r1 − r2) =
(

gdÎS ⊗ ÎF + gsŜ · F̂
)

δ(r1 − r2), (1)

where gd = (g1/2 + 2g3/2)/3 and gs = (2g3/2 − 2g1/2)/3
are the density-density interaction and spin-exchange
interaction strengths, respectively. Here, ÎS (ÎF ) is the
identity operator for the fermion (boson).
With the spinor Bose-Fermi mixture loaded into a

triangular optical lattice [27], the system is approxi-
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mately described by a tight-binding model Hamiltonian
Ĥ = Ĥb + Ĥf + Ĥbf , where

Ĥf = −tf
∑

〈i,j〉,σ

ĉ†i,σ ĉj,σ + Uf

∑

i

n̂f,i,↑n̂f,i,↓,

Ĥb = −tb
∑

〈i,j〉,α

b̂†i,αb̂j,α +
Ub

2

∑

i

n̂b,i(n̂b,i − 1)

+
Jb
2

∑

i

(F̂2
i − 2n̂b,i),

Ĥbf = Ubf

∑

i

n̂f,in̂b,i + Jbf
∑

i

Ŝi · F̂i. (2)

Here, 〈i, j〉 denotes the summation over nearest-neighbor
sites and σ =↑, ↓ and α = +1, 0,−1 denote spin states of
fermionic and bosonic atoms, respectively. ĉiσ (âiα) is the
annihilation operator for fermions (bosons) with spin σ

(α). n̂f,i =
∑

σ n̂f,i,σ =
∑

σ ĉ
†
i,σ ĉi,σ (n̂b,i =

∑

α n̂b,i,α =
∑

α b̂†i,αb̂i,α) is the number of fermions (bosons) at site i.

The spin operator Ŝi (F̂i) has three components Ŝiν =
∑

σσ′ ĉ
†
i,σ(Sν)σσ′ ĉi,σ′ (F̂iν =

∑

αα′ b̂
†
i,α(Fν)αα′ b̂i,α′) with

ν = x, y, z, where Sν (Fν) is the ν component of the
spin-1/2 (spin-1) operator. Uf , Ub, and Ubf represent
on-site density interaction strengths, and Jb and Jbf are
the spin-exchange interaction energies. The exchange
interaction Jb < 0 favors a state with fully polarized
bosonic spins [22, 23]. Such a ferromagnetic interaction
is considered in this work. Considering a mixture of 87Rb
and 6Li atoms, the s-wave scattering length for fermions,
6Li, vanishes due to an accidental cancellation at low
magnetic field [28, 29]. Thus, Uf is set to 0 in our theory.
Magnetic ordering of bosonic superfluids. Here,

our theory assumes bosons form a ferromagnetic
minicondensate on each lattice site. Such a treatment
is well justified when considering the system to be
a stack of triangular lattice layers, with a relatively
stronger tunneling for bosons than for fermions between
nearest layers [30]. In the ground state, the system is
uniform among different layers. Since bosons locally
form a fully polarized ferromagnetic condensation due
to interaction effects, the effective model to describe
its magnetic moment is a large spin model, in which
quantum fluctuations are expected to be suppressed [31].
This permits a valid mean-field treatment of bosons.
For spin-1/2 fermions, at 3/4 filling (meaning

(1/2NL)
∑

i〈n̂f,i〉 = 3/4 with NL is the number of sites),
the corresponding Fermi surface as shown in Fig. 1(b)
is nested, with three nesting vectors Q1 = (−2π/a, 0),
Q2 = (π/a,

√
3π/a) and Q3 = (π/a,−

√
3π/a), where

a is the lattice constant. Combined with Bose-Fermi
density and spin-exchange interactions, the perfect Fermi
surface nesting gives rise to ordering instabilities towards
formation of commensurate DWs and spin density waves
(SDWs) whose unit cells would involve four sublattice
sites, shown in Fig. 1 [19, 20, 24].

FIG. 1: (Color online) (a) Schematic picture of a triangular
optical lattice and the four-sublattice magnetic ordering. (b)
The Brillouin zone of the triangular lattice (solid hexagon)
and the Fermi surface (dashed hexagon) at 3/4 filling.
Three nesting wave vectors are Q1 = (−2π/a, 0), Q2 =
(π/a,

√
3π/a) and Q3 = (π/a,−

√
3π/a), where a is the

lattice constant. (c) The spin configuration of various
magnetic orderings of the spin-1 Bose-Einstein condensate,
where arrows denote the direction of four spin vectors 〈F̂i〉
(i = 1, 2, 3, 4): (I) all-out structure chiral spin order; (II)
“umbrella” structure spin order; (III) stripe-cant spin order;
(IV) ferromagnetic order; (V) coexistence of DW and 90◦

coplanar spin order; (VI) coexistence of DW and collinear
spin order; and (VII) coexistence of DW and ferromagnetic
order.

From the dominant instabilities, we assume in
numerics that spin-1 bosons form a magnetic ordering
where the density nb,i = 〈n̂b,i〉 and the spin vector 〈F̂i〉
are periodic under translations of the enlarged unit cell
with four sublattices as shown in Fig. 1(a). Within
the superfluid phase, we take mean-field approximations
for bosons, where the bosonic annihilation operator
b̂i,α is replaced by its mean value φi,α. Both the
intraspecies ferromagnetic interaction of bosons and the
interspecies spin-exchange interaction favor a state of
boson condensation with spins fully polarized locally.
The corresponding condensate wavefunction is φi =√
nb,ie

iξiζi, where

ζi =
(

e−iϕi cos2(θi/2), sin θi/
√
2, eiϕi sin2(θi/2)

)T

. (3)

It yields the spin moment 〈F̂i〉 = nb,ifi, where fi ≡
(sin θi cosϕi, sin θi sinϕi, cos θi). In our calculation, we
allow for a finite-momentum condensation by introducing
a parametrization of the phase, ξi = q · ri + ξ̃i, where
nonzero q describes the finite momentum and ξ̃i is
periodic across different enlarged unit cells.
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FIG. 2: (Color online) Zero temperature phase diagram of
spinor Bose-Fermi mixtures in a triangular lattice at 3/4
filling for fermions as functions of tb and Ubf . Here, Ub+Jb =
3.6 tf (Ub > 0 > Jb), Jbf = 0.4 tf , n̄b = 2 is the averaged
number of bosons per site.

With the spin configuration of bosons determined by
a fixed condensate wavefunction φi, the dynamics of
fermions is governed by an effective Hamiltonian:Ĥeff

f =

−tf
∑

〈i,j〉,σ ĉ
†
i,σ ĉj,σ+

∑

i[Ubf 〈n̂b,i〉n̂f,i+Jbf〈F̂i〉·Ŝi]. The

total energy cost is given by E[φi] = Eb[φi] + Ef [φi],
where Eb = −tb

∑

〈i,j〉,α φ∗
i,αφj,α +

∑

i[Ubnb,i(nb,i − 1) +

Jb(n
2
b,i− 2nb,i)]/2 describes the energy of the condensate

and Ef is the many-body ground state energy of fermions

at 3/4 filling with respect to Ĥeff
f (in our numerics to

calculate Ef , we discretize the first Brillouin zone into
72× 72 points). The variational energy functional E[φi]
is then minimized by the simulated annealing method to
obtain the ground state.

Fig. 2 summarizes the ground-state phase diagram for
a fixed Jbf as functions of tb and Ubf . The averaged
number of bosons per site is chosen as n̄b = 2. In the
limit of Ubf = 0 and tb = 0, the system is described
by a classical Kondo lattice model [19, 20], where chiral
magnetic orders in the ground state are known to occur
even with an infinitesimal Kondo coupling Jbf n̄b due to
Fermi surface nesting. Away from this limit, nonzero
boson tunneling and Bose-Fermi density interaction
change the ground-state magnetic ordering significantly.
The former favors a uniform condensate wavefunction
to lower the kinetic energy and will thus suppress
spin textures. The latter could induce spatially non-
uniform density distributions of bosons. Indeed as boson
tunneling is increased, our numerics finds a sequence of
states with decreasing spin twists. The corresponding
schematic spin configurations are illustrated in Fig. 1(c).
As the Bose-Fermi density interaction is increased, we
find that three states denoted by phases (V), (VI), and
(VII) are accompanied by DWs.

(1) Non-coplanar magnetic ordering. Numer-
ically, we found two non-coplanar magnetic ordered
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FIG. 3: (Color online) The spectrum of the Hamiltonian Ĥeff
f

describing a single fermion moving in a fixed bosonic spin
texture background in a strip geometry for different phases
at tb = 0.2 × 10−3 tf and (a) phase (I), Ubf = 1.5 tf , (b)
phase (V), Ubf = 2.35 tf , and (c) phase (VI), Ubf = 2.75 tf .
Here, red dash-dot lines denote the edge states.

phases denoted by (I) and (II). They are characterized
by a nonzero local spin chirality, which is defined as
χijk = fi · fj × fk on three different lattice sites i, j,
and k.
Phase (I) shows the same triple-Q chiral magnetic

ordering found in the Kondo lattice model [19, 20]. The
boson number density is uniform with nb,i = n̄b and

fi = (η1 cos(Q1 · ri), η2 cos(Q2 · ri), η3 cos(Q3 · ri)) , (4)

where |η1| = |η2| = |η3| = 1/
√
3. The spin chirality is

uniform with χ123 = χ243 = ±4/(3
√
3) which means that

fermions experience an effective uniform magnetic flux.
Via coupling to spin textures, fermions are gapped and

spontaneously form a quantum Hall insulator leading
to quantized Hall conductivity [19]. To elucidate this
behavior, we investigate edge states in a strip geometry,
where periodic boundary condition is assumed in the
x-direction. For a finite length in the y-direction, the
spectrum for single-particle Hamiltonian Ĥeff

f in this strip
geometry are plotted in Fig. 3(a). It clearly shows that
there are topological edge states in the gap connecting
the upper and lower bulk states.
Phase (II) shows a uniform boson density distribution

and a non-coplanar magnetic ordering, where four spin
vectors 〈F̂i〉 form a umbrella structure as illustrated in
Fig. 1(c). The local spin chirality is staggered with a zero
summation on the whole lattice and its absolute value is
uniform.
(2) Coplanar magnetic ordering. Numerically,

we find two coplanar phases denoted by (III) and (V).
Within phase (III), bosons are uniformly distributed
in every site and four spin vectors form a stripe-cant
structure as shown in Fig. 1(c). Phase (V) shows a
90◦ coplanar magnetic ordering accompanied by a DW,
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where a pair of antiparallel spin vectors have a larger
magnitude than another pair of antiparallel spin vectors.
(3) Collinear magnetic ordering. The remaining

three phases (IV), (VI), and (VII) show collinear
magnetic orderings on bosons. More specifically, phase
(IV) and phase (VII) demonstrate a ferromagnetic spin
ordering, where all spins of bosons are polarized along
the same direction. For the phase (VI), in a four-
sublattice unit cell three smaller spin vectors with a
same magnitude are polarized along opposite direction
of the fourth spin vector with a larger magnitude. This
magnetic ordering is similar to the SDW of electronic
systems driven by thermal fluctuations, which was
discussed in Ref. [32].
Chiral bosonic superfluid. Due to the Bose-Fermi

interactions, Fermi surface nesting of fermions not only
induces spontaneous spin textures of bosons, but also
changes the bosonic superfluidity. The reason is that
the spin-gauge symmetry of the ferromagnetic spin-
1 Bose-Einstein condensate implies that spatial spin
configurations can generate mass circulations [25, 26],
which is manifested in the spatially dependent ξi. We
find that bosons condense at zero momentum with q =
0 for phases: (II), (III), (IV), (V), (VI), and (VII).
The only exception is found in the phase (I), where
bosons condense at a finite momentum with q 6= 0.
To understand this feature more clearly, we consider
an effective Hamiltonian Ĥsp

b = −∑

〈i,j〉 t̃b,ij d̂
†
i d̂j for

spin-1 bosons with fixed spin directions as that given
by Eq. (4). Here, d̂†i creates a spin-1 boson at site i

with the spin state ζi and t̃b,ij = tbζ
†
i ζj describes the

tunneling of bosons in such a spin state. For instance,we
choose η1 = η2 = η3 = 1/

√
3, resulting in {ϕ1 =

π/4, θ1 = arccos(1/
√
3)}, {ϕ2 = −π/4, θ2 = π − θ1},

{ϕ3 = 3π/4, θ3 = π − θ1}, and {ϕ4 = −3π/4, θ4 = θ1}.
Diagonalizing the Hamiltonian, we find that the lowest
energy band shown in Fig. 4(a) has band minima at K =
(2π/3a, 0) and K′ = (−2π/3a, 0). The corresponding
eigenstates have equal populations on each site. These
two features are underlying reasons for finite-momentum
condensation and uniform density distribution of bosons
in the phase (I). Take q = K as an example, the
spatial variation of ξi is illustrated in Fig. 4(b). As q

is nonzero, bosons condense at a finite momentum, thus
time-reversal and parity symmetries are broken.
Experimental realization and detection. The model of

Eq. (2) can be realized by loading a mixture of spin-
1/2 6Li and spin-1 87Rb atoms [33] in the same spin-
independent triangular optical lattice. For instance, we
choose laser fields at wavelength λ = 1064 nm. The
single photon recoil energy Er and polarizability α(λ)
for 87Rb (6Li) atoms are h × 2.0 kHz (h × 29.2 kHz)
and 689.9 a3B (270.8 a3B) where aB is the Bohr radius
and h is the Planck constant [34, 35]. Tuning the
field intensity, we should be able to create a deep
optical lattice for Rb atoms to have small enough tb

FIG. 4: (Color online) (a) The lowest energy band of the

Hamiltonian Ĥsp

b with eigen-energy denoted by εk. (b)
Illustration of the spatially varying phase (ξi) of condensate
wavefunction for the state (I). The symbols, �, ◦, △, ∇,
⋄ and ⊲, represent different phase angles, 0, π/3, 2π/3, π,
4π/3 and 5π/3, respectively. One unit cell of ξi is denoted
by the dashed rhombus. (c) Time-of-fight pictures for three
spin states MF = 1 (left), 0 (middle) and −1 (right) expected
from the experiment for the state shown in (b) as a signal of
the finite-momentum-condensate phase. Here, outer hexagon
indicates the first Brillouin zone of the triangular lattice and
the inner hexagon denotes the first Brillouin zone for the
ordered state with an enlarged unit cell with four sublattices.

comparing to tf to reach phases (I)-(IV). Changing
the laser frequency can further enhance this capability
to reverse the relative amplitude of interspecies lattice
potential [35]. As in experiments only the interspecies
s-wave triplet scattering length (∼ 20 aB) between

87Rb
and 6Li has been measured [33], the parameters in our
model, Ubf and Jbf , cannot be determined. Whether
Bose-Fermi density interaction are strong enough to
induce DWs requires future experimental developments.
In a harmonic trap potential, four phases (I, V, VI,

VII), which have a charge gap in fermions, are expected
to occupy a finite spatial range as analogous to formation
of Mott insulator shells observed in lattice Bose gases.
For other phases which do not have a charge gap, they
could be in principle sensitive to the trap. To detect
various bosonic magnetic ordering, we suggest to use
the spin-resolved optical Bragg scattering technique [36].
The chiral bosonic magnetic ordering can be identified
from triple-Q peaks in spin structure functions. Its
phase boundary can be easily probed in time-of-flight
measurements because it is the unique state showing non-
zero momentum condensation, as illustrated in Fig. 4(c).
Based on previous studies on Kondo lattice models [37],
we expect that the optimal transition temperature for
the chiral magnetic ordering in a Bose-Fermi mixture can
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reach around (0.01, 0.1) tf . Rigorous calculations are left
for future study.
Conclusion. We have studied the ground state of

a mixture of spin-1 bosons and spin-1/2 fermions in
a triangular optical lattice. This spinor Bose-Fermi
mixture is found to support interesting magnetic orders,
such as non-coplanar, coplanar, and collinear spin orders.
Most significantly, there is a triple-Q chiral magnetic
ordered state, featuring a spontaneous quantum Hall
effect in fermions and chiral crystalline superfluidity
in bosons. It survives at a finite Bose-Fermi density
interaction and a very small bosonic tunneling. The
remarkable features we have found for bosons are
beyond the physics contained in CKLM, and provide
experimental observables for the underlying symmetry
breaking in time-of-flight measurements. Quantum and
thermal fluctuation effects on top of the static spin
textures could give rise to dynamical gauge fields [38–40],
which is open for future study.
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