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An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultra
thin gold foils have been irradiated by an ultra short laser pulse at a peak intensity of 8×1019 W/cm2.
Highly charged gold ions with kinetic energies up to > 200 MeV and a bandwidth limited energy
distribution have been reached by using 1.3 Joule laser energy on target. 1D and 2D Particle in Cell
simulations show how a spatial dependence on the ions ionization leads to an enhancement of the
accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization
inside the thin target leading to a field enhancement for the heavy ions by Coulomb explosion. It
is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the
laser driven heavy ion acceleration.

PACS numbers:

Laser driven ion acceleration has gained a wide scien-
tific interest, as it is a promising ion source for inves-
tigation in basic plasma physics and for application in
accelerator technology [1, 2] related to bio-medical [3, 4]
and hadron research [5]. While the acceleration of pro-
tons and light ions are intensively investigated during the
last decade, little is reported on acceleration of heavier
ions [6]. Such knowledge is mandatory to achieve the ob-
jectives of upcoming new laser facilities [7, 8], e.g. the
exploration of nuclear, astrophysical questions as well as
the potential use as beam lines for heavy ion radio ther-
apy [9]. Energies of heavy ions exceeding the mass num-
ber A � 12 with Ekin/u ∼ 1 − 2 MeV/u (energy per
nucleon) have been reported so far [6, 10], by using short
pulse laser systems with laser pulse energies well above
20 J [11].

In the following we report and discuss a considerable
energy boost for acceleration of highly charged heavy ions
with only using 1.3 J on an ultra thin heavy material
target. We accelerated ions up to EMax/u > 1 MeV/u,
with a bandwidth limited energy distribution. We found
a remarkable deviation in the maximum energy to charge
Z scaling in comparison to established models of Mora
[12] and Schreiber [13, 14].

Presently used laser ion acceleration schemes like Tar-
get Normal Sheath Acceleration (TNSA) [15], or leaky
light sail / Radiation Pressure Acceleration (RPA) [16–
18], Coherent Acceleration of Ions by Laser (CAIL)
[4, 19], Break Out Afterburner (BOA) [20] make use of
an energy transfer from laser to electrons and in a follow-
ing step from electrons to ions. In the typical physical
picture an ultra intense laser pulse is focused on a thin
target, ionizes it and displaces the electrons from the ion
background. This creates a high electrical field at the
rear and front side of the target. The Coulomb attrac-

tion field of the ions circumvents the electrons escape and
enables the acceleration of the ions. For ultra thin tar-
gets and relativistic laser intensities the acceleration is
enhanced by the transparency of the target and the rel-
ativistic kinematics of the electrons [18, 21–23]. Further
optimization for the energies of light ions is proposed by a
Coulomb exploding background of heavy ion constituents
in a ultra thin foil target [24–26]. A remarkable contri-
bution by the Coulomb explosion to the energy of very
heavy ions energy is predicted but still under theoretical
discussion [27, 28].

Most acceleration models assume an averaged degree
of ionization leading to a fixed electron density - which
creates the moving accelerating electrical field for the
ions. During the laser plasma interaction ions of dif-
ferent charge to mass ratio Z/A separate in the velocity
picture, leading to higher MeV/u for the lighter material.
The energy per nucleon decreases significantly with the
decreasing charge to mass ratio, as the accelerating field
is screened by the light ions. Laser plasma experiments
using thin foils showed, that in the presence of hydrogen
and carbon, ions with a smaller Z/A ratio are not accel-
erated at all or stay with much lower velocity [10]. Only
specially prepared, heated targets without contamination
by light ions, enabled an acceleration of the heavy ions
up to the MeV/u range. To our knowledge we obtained
for the first time heavy ions with > 1 MeV/u in pres-
ence of the contamination layer. While the maximum
kinetic energy EMax

kin for hydrogen reach 12 MeV/u and
4.2 MeV/u for C6+/O8+, the highest charged gold ion
& Au50+ follows with & 1 MeV/u. Experiments have
been performed at the Max Born Institute High Field
Ti:Sapph. laser. It delivers 1.3 J at (30 − 35) fs on the
target after contrast enhancement by a XPW [29] fron-
tend and a Double Plasma Mirror (DPM) [30], leading



2

FIG. 1: Raw spectra from Thomson spectrometer (single shot
measurement), particle density in false color coding. Each
trace represents a different charge to mass ratio Z/m. Gray
shade indicates end of detector. Light ion traces (H+, C6+

- C3+, O8+ - O5+) are identified. Overlay shows theoretical
parabolas at different charge states of gold ions (black dots).
Straight lines mark theoretical constant energy at each degree
of ionization for gold, m = 197 u.

to a pre pulse free peak to ASE contrast of ≤ 10−14 in
the minor ps range. The laser is focused by a f/2.5 off
axis parabola to a focal FHWM size of ∼ 4 µm, giving an
peak intensity of 8× 1019 W/cm2. The normalized laser
field is a0 = qEL/mecω = 6 for linear polarization, with
the electron mass me and charge q, laser frequency ω and
speed of light c, respectively. We focused the laser at free
standing (14 ± 2) nm gold foil [31], which we produced
by thermal evaporation at 10−6 mbar (deposition rate:
0.2 nm/s), followed by a floating process. HRTEM (High
Resolution Transmission Electron Microscopy) reveals a
polycrystaline structure of the gold formed by an island
growth mode on a carbon based supportive film, which
we identify as the rest of the parting agent. The average
grain size is of the order of 10 nm. Determination of the
composition has been carried out by EDX (Energy Dis-
persive X-Ray Spectroscopy) with a state of the art FEI
ChemiSTEMTMsystem and was quantified standardless
with a Cliff-Lorimer calculation. The foil consists of gold
96%, carbon 2−3% and oxygen 2%, hydrogen is not de-
terminded. STEM (Scanning Transmission Electron Mi-
croscopy) measurements reveals a sub crack like structure
in (10−20) nm distance (see Fig.3b). Structured surfaces
can increase the absorption of the laser light, leading to
a higher efficiency of the acceleration mechanism. This
is at the moment discussed widly, but yet has not been
considered for the thinnest targets [32, 33]. Accelerated
particles were detected in single shot measurement by a
Thomson spectrometer at 0◦ in laser propagation direc-
tion. The setup consists of an entering pinhole with a
diameter of 110 µm, a permanent magnet, electrical field

FIG. 2: Maximum (black) and minimum (green) kinetic en-
ergy of gold ions in dependence of their charge state Z. For
Z < 25 the detectors range is cutting the low energetic part
of the spectra. Red line shows a (Z−6)2.7 and black line a Z2

to EMax
kin , both fit functions with the same scaling coefficient.

plates and a 100 mm Multi Channel Plate (MCP Hama-
matsu) covering a detection angle of 1 × 10−7 sr from
the target [34]. Measurements at a lower laser contrast
(without DPM) 5 10−11, showed much lower EMax

kin and
particle numbers for hydrogen, carbon, oxygen ions and
no gold ion spectra in the measured energy range.

Fig.1 shows a captured picture of the detector. We
identify traces of accelerated gold particles for ionization
degrees reaching from Au1+ to > Au50+, well beyond
the C3+ trace. With increasing charge to mass ratio we
observe light ions traces of oxygen, carbon and hydro-
gen. For a quick interpretation of the measured data,
the overlay in Fig.1 shows lines of constant energy for
m = 197 u to mark constant energy positions for differ-
ent charge states on the detector. We observed a strong
signal for gold ions between Au20+ and the highest degree
of ionization > Au50+ with kinetic energies from 10 MeV
to 200 MeV. The traces exhibit a distinct maximum in
particle numbers and a bandwidth limited energy distri-
bution for charge states Z > 25. The low energetic cutoff
for ions charged Z < 25 probably lies beyond the detec-
tion range. The symmetry of the gold ions cutoff on the
detector seems to follow a lemniscate like function (half
figure eight): r(φ(Z)) ∼ a2 × 2 sin(2φ(Z)), with a as a
constant of the radius and φ(Z) a nonlinear, charge de-
pending function. We evaluated the highest energy cutoff
and lowest energy cutoff for the different charge states of
gold ions in Fig.2. Compared to a expected EMax

kin ∝ Z2

scaling by the model of [13], our data shows a boosted
scaling of EMax

kin ∝ (Z − 6)2.7. For a better comparison
Fig.2 uses the same scaling coefficient for both fit func-
tions. Experiments with gold coated plastic foils (Form-
var (10 − 40) nm + (2 − 6) nm gold coating on target
rear side) showed similar results concerning the multiple
degrees of ionization, the Z to EMax

kin scaling, reaching
close to the MeV/u range and with a limited bandwidth
in the energy spectrum (see supplement [35]). It reveals
a general mechanism for the acceleration of heavy ions if
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FIG. 3: a: The associated evaluated energy distribution for
selected, single traces of gold ions of Fig.1 and Fig.2 is shown,
exhibiting a pronounced maximum. dE is given by the bin-
ning of the spectrometers resolution. b: STEM measurement
of freestanding target foil reveals a crack like structure. Dark
cracks mark here the carbon substrate layer.

ultra thin foil with heavy material is used. The energy
distribution related to Fig.1 of selected gold ions is shown
in Fig.3. The particle numbers are given relative to a de-
tector calibration with hydrogen and carbon, assuming a
similar response for heavy ions [36]. The divergence of
the heavy ion beam is assumed with 3◦, as it is smaller
compared to the protons one [37]. Here we inferred the-
oretically from a divergence measurement of the protons
(for methods see supplement [35, 38]) by using the same
acceleration field. Our latest theoretical findings indicate
a dependency on charge and mass number [35]. We ap-
proximate the energy content of all accelerated gold ions
with to 5% of the laser energy, while the H+ reaches
< 2%.

In order to account for the theoretical ionization Z in
dependence on the electrical field strength a0 we used the
ADK model [39] as collision ionization is not significant
for our case. The calculation for gold is shown in Fig.3a)
and we find an ionization dependence Z(a0) = 23× a0.40 .
The field strength for our parameters considers an inten-
sity of a0 = 5, which leads to a maximum ionization of
Z(a0) = 42. Higher ionization as observed in our exper-
iment can be attributed to field enhancement in case of
partly transparent target plasma, to contributions from
the surface structure and to self focusing.

Our 1D PIC simulation considered a dynamic ioniza-
tion and was evaluated at high accuracy (mesh size: 0.16
nm, 200 particles per cell, error < 1%) has been per-
formed using the laser parameters of the experiment and
a target thickness of 20 nm. For simplification we freezed
the ionization in time at the end of the laser pulse. The
1D PIC simulation shows in longitudinal direction a sym-
metrical, varying ionization degree Z(z) (see Fig.4b) [40].
Compared to an averaged degree of ionization, it leads
to an enhancement of the electrical field at the front and
rear side of the target by contributions of the repelling
Coulomb force. The field enhancement becomes strong
for highly charged ions. For the 2D PIC simulation we
used the ionization distribution of the 1D PIC simulation,

FIG. 4: a: The dependence of gold ionization on the electric
field EL in units of a0 calculated with the ADK Model. The
dashed line (red) fits Z(a0) = 23 × a0.4

0 . b: EL calculated
from analytical model (red) and PIC simulation (green) con-
sidering ion layers of the following degrees of ionization: The
distribution of ion charge is: 0−1nm Z = 42, 1−2nm Z = 33,
2 − 18nm Z = 15, 18 − 19nm Z = 33, 19 − 20nm Z = 42.
Black line - EL calculated with an averaged ionization degree
of Z = 15.

at 5 × 1019 W/cm2, 35 fs, 4 µm focus diameter, Gaus-
sian laser profile. The pulse interacts with a pure 20 nm
thick gold target. The step size of the calculation was
0.5 nm with 30 particles per cell. In Fig.5 we compare
the calculated energies with our experimental results and
the model of [13]. The EMax

kin to Z dependence has to be
separated into three parts: while for Z < 15 the Au ion
energies fit to a EMax

kin ∼ Z2, ions with Z > 15 are with
an exponent > 2, followed by a smaller linear dependence
for Z > 42.

Our analytical model focuses on the Poisson equation,
as the electrical field of the laser does not penetrate deep
inside even in our thin foil. We take a spatially varying
ionization of heavy target material into account:

2(
∂2ηe
∂ξ2

+
∂2ηe
∂ς2

) = ηe − Z(E)ni0Θ(
lf
2
− |ξ|)Θ(

le
2
− |ς|)

(1)

Here we use a 2D geometry with the coordinates
(z, y) = (ξ, ς)rD, where the Debye radius is r2D =
TH/4πe

2neH and assuming the process to be adiabatic.
The normalized electron density is ηe = ne/neH = 1+φ/2
and the normalized electric field is E = 2c

ωrD

∂ηe
∂ξ . The

ion density ni(z, y) = ηi0Θ(z)Θ(y)neH has a rectangu-
lar shape in both directions, where Lf,e(t) = lf,e(t)rD
are dynamic foil thickness and electron spot size, respec-
tively. The hot electron density is determined from quasi-
neutrality and the ionization degree is Z(E) = 23E0.4.
We introduce a spatial dependence of the hot electron

density: neH ≈ πe2n2
i

TH
(
∫ lf0

0
Z(ξ))2. The spatial depend-

ing degree of ionization is given as:

Z(ξ) = 23× (
2c

ωrD

∂ηe
∂ξ

)0.4 (2)
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FIG. 5: The dependence of maximal ion energy on its ion-
ization degree: the experimental data of Fig.2 - deep blue
squares, 2D PIC - simulation data - red squares, Schreiber
model - black line and our model - red line. The distribu-
tion of ion ionization is according to the 1D PIC simulation
in Fig.4.

The electron temperature TH depends on the pulse du-
ration τL and on a laser absorption coefficient κ (here

and in the following see [41]): TH(lf ) ≈ κ(lf0)ILτL
nehlf0

. For

simplification, we assume a rectangular transversal (y)
and longitudinal (z) electron density profile, which width
changes in time with lf (t). For the ultrathin foil follows:
Θ(lf (t)/2 − |ξ|) → lf (t)δ(ξ), we take the expansion of
the recirculating hot electrons as a time dependent pa-
rameter le(t). At this point we freeze the degree of ion-
ization in time. The time dependent solution of Eq.1 at
|z| ≥ lf (t)/2 looks similar to [41]:

E(z, y, t) = 4πeni0
sign(z)Θ(le(t)− |ς|)
1 + σctrDlf (t)/D2

0

×
∫ lf0

0

Z(ξ)dξ exp(−|ξ|+ lf0
2

)

(3)

D0 denotes the initial electron spot size and σc is the
plasma conductivity. The equation contains a spatial de-
pendence of the charge distribution in the target instead
of an averaged, constant one. The dependence of the an-
alytical field (3) on coordinate z is similar to the PIC
simulated one (Fig.4b). The charged ion front lf (t) in
the target can be calculated by the equation of motion
after inserting (3) and with C = 16πe2lf0ni0/mi:

lf (t) = lf0 + t

√
C × Z(lf0)[

∫ lf0

0

Z(ξ)dξ] ln(
lf (t)

lf0
) (4)

Expression (4) defines the energy of an ion with max-
imum degree of ionization, which is at the front of ac-
celeration εZ(lf0) = mi l̇

2
f (t)/8. Electron density in each

instant is defined by (1). From the equation of conti-
nuity follows ni(z, t) = nilf0Θ(lf/2 − |z|)/lf (t) and the
ion velocity with the coordinate of z reads: vi(z, t) =
zl̇f (t)/lf (t), |z| < lf (t)/2. The energy for a particle
placed initially at ξ0 with an charge of Z(ξ0) has to be
evaluated parametrically with (2) and (4). For ions inside
the target ξ0ε[0, lf/2] results:

εz(ξ, t
∗) =

mi

2
(ξ0/lf0)2L̇2

f (t∗) (5)

With t∗ ≈ D2
0/σcrDlf for ions of very high energy

t∗ ∼ 2τL [12]. This leads to ∼ Z3 ion energy to charge
scaling, which is in good agreement with our PIC simu-
lated and experimental results (see Fig.5). Ions with a
very high degree of ionization Z > Z(lf0), are formed
in a field maximum at the target rear side. These ions
have the initial coordinate ξ0 = lf0. According to (4)

l̇ ≈
√
Z(lf0)) for ions with a high charge Z, the formula

(5) gives for all Z > 42 the linear relation εZ ∼ Z. The
smaller energy to Z scaling is explained by the decreasing
charged background compared to ions placed inside the
target.

In conclusion, we demonstrated efficient acceleration
of heavy ions by an ultra short laser pulse system. So far
laser systems that compensate lower laser energy with a
shorter pulse duration to reach the same intensity, had
not been able to accelerate heavy ions with A > 12 into
the MeV/u region. By using an ultra thin foil of heavy
material we achieved highly charged heavy ions with a
limited bandwidth in the energy spectrum, reaching up
to 1 MeV/u. Furthermore we simplified a complex tar-
get preparation, which achieves a prerequisite for future
applications. We demonstrated experimentally and the-
oretically how a spatial distribution of the ionization in-
side the target leads to a field enhancement for the heavy
ions by Coulomb explosion. This has the potential to
greatly improve the efficiency of heavy ion acceleration
by stronger kinetic energy with charge scaling. Our re-
sults indicate that e.g. energies with 7 MeV/u can be
achieved with ∼ 50 times higher laser energy than in our
experiment. This relaxes the previously estimated laser
power requirements for upcoming facilities [7] by a factor
of 3 which is enormous in costs if ultra fast ∼ 100J class
lasers are considered.
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D. C. Carroll, K. Flippo, D. C. Gautier, M. Geiel, K. Har-
res, B. M. Hegelich, et al., Review Scientific Instruments
80, 033301 (2009).

[39] M. Ammosov, A. Delone, and V. Krainov, Sov. Phys.
JETP 64, 1191 (1986).

[40] A. Zhidkov and A. Sasaki, Physics of Plasmas 7, 1341
(2000).

[41] A. A. Andreev, S. Steinke, M. Schnuerer, A. Henig, P. V.
Nickles, K. Y. Platonov, T. Sokollik, and W. Sandner,
Physics of Plasmas 17, 123111 (2010).


