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In the present work, we experimentally implement, numerically compute with and theoretically
analyze a configuration in the form of a single column woodpile periodic structure. Our main finding
is that a Hertzian, locally-resonant, woodpile lattice offers a test bed for the formation of genuinely
traveling waves composed of a strongly-localized solitary wave on top of a small amplitude oscillatory
tail. This type of wave, called a nanopteron, is not only motivated theoretically and numerically,
but are also visualized experimentally by means of a laser Doppler vibrometer. This system can
also be useful for manipulating stress waves at will, for example, to achieve strong attenuation and
modulation of high-amplitude impacts without relying on damping in the system.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

Introduction. Granular crystals are rapidly becom-
ing a popular vehicle for the theoretical study, numeri-
cal exploration and experimental identification of a wide
range of phenomena ranging from the near linear, to the
weakly or even highly nonlinear limit [1–4]. The rele-
vant chains consist of assemblies of particles in one-, two-
and three-dimensions inside a matrix (or a holder) in or-
dered, closely packed configurations. An especially ap-
pealing characteristic of such structures is the ability to
tune their dynamic response by an applied static load.
This may place the system in a near linear or weakly
nonlinear regime, in the case of precompressed chains,
or even in a highly nonlinear regime, in the absence of
such static load (often termed sonic vacuum, due to the
vanishing sound speed in that case) [1]. It is exactly
this dynamic tunability and the controllability of both
the assembly and the measurement of these settings that
has enabled a wide range of proposals for applications.
Among others, we note shock and energy absorbing lay-
ers [5–7], acoustic lenses [8], acoustic diodes and switches
[9, 10], and sound scramblers [11].

While various geometries of building blocks have been
reported (e.g., spherical, toroidal, or elliptical shapes),
granular crystals in woodpile architectures, made of or-
thogonally stacked rods, are largely unexplored. This is
in contrast to their electromagnetic counterpart – called
woodpile photonic crystals – that successfully demon-
strated their efficacy and versatility in manipulating elec-
tromagnetic waves [12, 13]. Even existing studies on
woodpile phononic crystals are limited primarily to their
linear elastic responses [14–16], without addressing their
nonlinear wave dynamics.

In this Letter, we show that periodic structures in
woodpile configurations can be very useful in manipulat-
ing highly nonlinear stress waves at will, including high
wave attenuation and spontaneous formation of novel
traveling waves after an impact excitation. Arguably,

the most fundamental waveform that arises in granular
chains within the sonic vacuum is a solitary wave with a
highly localized waveform [17–22]. Recently, other types
of coherent traveling waves in granular chains, within the
sonic vacuum, were predicted to exist; periodic traveling
waves [20, 23] and static or traveling breathers in granu-
lar chains including on-site potentials [24].

Here, we report experimental evidence of the existence
of a new type of nonlocal solitary wave within the sonic
vacuum. It consists of a highly localized solitary wave-
form on top of an extended, small-amplitude periodic
tail, existing in granular chains with local resonators.
Such a solution, satisfying all the other requirements of
a solitary wave except that it asymptotes not to zero
but to a small amplitude oscillation at infinity, has been
long termed a nanopteron [25]. This nanopteron arises in
numerous models including continuum [26–28] and dis-
crete [29] dynamical systems. Some examples, like the
φ4 breather, have received considerable theoretical atten-
tion [26, 30, 31] and relevant reviews/books have summa-
rized much of this nonlocal solitary wave activity [32, 33].
Nevertheless, experimental studies of the nanopteron are
extremely limited [28].

In what follows, we present the experimental setup
of the woodpile lattice and a brief overview of its de-
scription via an effective discrete element model (DEM).
In different regimes, we experimentally observe (i) the
spontaneous formation and steady propagation of the
nanopteron, (ii) the potential breathing of the solitary
waves, i.e., modulation as they travel or (iii) the decay
of the solitary waves, which is due to the coupling to
the resonators, rather than the damping of the system.
All of the relevant features are corroborated by numer-
ical computations, and some of the salient features are
explained theoretically. We thus believe that this study
provides a roadmap for further exploration and analysis
of highly nonlinear waves in a host of settings, including
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FIG. 1: Schematic of (a) experimental setup and (b) discrete
element model; see text for details.

most notably granular chain models with the addition of
an internal resonator on each node, a context that has
recently been of considerable interest in its own right [34–
38].

Experimental and Theoretical Setup. Figure 1 illus-
trates the experimental setup of our 1D woodpile struc-
ture and the corresponding DEM. The chain is composed
of orthogonally stacked cylindrical rods made of fused
quartz (Young’s modulus E = 72 GPa, Poisson’s ratio v
= 0.17, and density ρ = 2200 kg/m3). We test three dif-
ferent rod lengths: [20, 40, 80] mm, while keeping their
diameters identical to 5.0 mm. We excite the chain by
striking the center of the uppermost rod with a 10 mm-
diameter glass sphere. While we present in this Letter
the results for a measured impact velocity of V 0 = 1.97
m/s, the effect of varying striker velocities can be found in
the Supplemental Material [41]. We record the transmit-
ted stress waves using a piezoelectric force sensor (PCB
C02) placed at the bottom of the woodpile chain. To
investigate the propagating waveforms along the path,
we alter the number of stacked cylinders from one to N
(total number of cylinders) and synchronize the signals
with respect to the striker impact moment, which is de-
tected by a small piezoelectric ceramic plate bonded on
the surface of the top rod. A particular challenge within
our setup concerns the experimental identification of the
especially weak oscillations of the unit cells that are crit-
ical for our reported observation of the nanopteron. For
this, we introduce a laser Doppler vibrometer (Polytec,
OFV-505), which is mounted on an automatic sliding rail
to detect localized vibrations of each rod in the resolution
of 0.02 µm/s/Hz1/2.

As suggested by Fig. 1(b), the dynamics of the wood-
pile lattice along the axis of the contacts can be effec-
tively described by a system of nonlinear oscillators that
are coupled to adjacent masses. Assuming the principal
nodes (associated with the rods’ axial motion) as having
mass M and a coupling of βc, and the internal resonators
within the rods as having a coupling of k1 and a mass of

FIG. 2: Numerical (solid black) and experimental (dashed
red) force profiles in space-time (measured in ms) in 1D wood-
pile crystals composed of (a) 20 mm and (b) 40 mm rods.
The insets show the numerical magnified force profiles of
nanoptera, while the colormap represents the magnitude of
the contact force.

m1, we propose the following generalized Hertzian DEM,

Müi = β(ui−1 − ui)3/2 − β(ui − ui+1)3/2

+ k1(vi − ui), (1)

m1v̈i = k1(ui − vi). (2)

This model allows us to describe longitudinal excitations
along the axis of the contacts in the presence of internal
vibration modes that can store energy in their own right.

The effective parameters m1,M and k1 of this DEM
description are determined via an optimization process
based on the envelopes of propagating waves (see Sup-
plemental Material for further details [41]). Note that
in Eq. (1), β assumes the value βc within the chain,
while it is βs for the coupling of the striker to the first
bead and βw for the coupling of the last bead to the
wall (cf. Fig. 1). In what follows, we will rescale the
time t → t

√
βc/M and the coupling κ = k1/βc for the

purposes of our analysis. The mass ratio is denoted as
ν = m1/M .
Experimental Observations, Numerical Corroboration

and Theoretical Analysis. Figures 2(a) and (b) illustrate
the comparison of the wave propagation in 1D wood-
pile lattices composed of 20 particles of 20 mm and 40
mm rods respectively. Dashed red (solid black) curves
represent the contact force profiles obtained by experi-
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ments (numerics). The numerical results are also shown
in the underlying surface maps to ease visualization of
wave modulation effects. In addition to the accurate rep-
resentation of the experimental findings by the DEM, we
can make a few further observations here. In the case
of 20 mm rods, the striker rapidly settles into a soli-
tary wave (in a way reminiscent of the standard granular
chain [1, 2] – however with a significant difference, as we
will see below). For the 40 mm case, a traveling breather
appears to form in a pattern similar to numerical ob-
servations in [24]. This wave emerges after a transient
period in which a primary wave experiences an expo-
nential decay (which can be computed semi-analytically;
see Supplemental Material [41]) and a secondary wave
emerges due to the coupling with the resonators. How-
ever, a key feature shared by both traveling structures is
the existence of a persistent form of background oscilla-
tion as seen in the insets of Fig. 2. We note that here the
wake of the principal pulse has a constant amplitude tail.
This feature which has also been confirmed by means of
simulations in considerably larger chains (as illustrated
through suitable numerical experiments in Supplemental
Material [41]) is different from what is the case in the
so-called Kawahara solitary waves, where the tail is de-
caying in amplitude away from the main wave shape [39].
It should also be mentioned here that these weakly non-
local solitary waves form even in the presence of dissipa-
tion although their features may be attenuated over time
(again, we briefly discuss the relevant features in Supple-
mental Material [41]). We now explore this nanopteronic
waveform more quantitatively.

The surface maps in Fig. 3(a) and (b) show the an-
alytical and experimental velocity profiles respectively
of the tails of the observed waveforms that appear in
a 40 particle chain of 20 mm rods. The traveling waves
spontaneously become nanoptera by developing oscilla-
tory patterns of velocity, which clearly follow the prin-
cipal solitary wave (highlighted in red color). It should
be noted that the velocities involved in the nanopteronic
tails are approximately three orders of magnitude smaller
than those of the solitary waves; yet, they can be ac-
curately measured through our laser Doppler vibrom-
eter. The frequency and wavenumber content of the
nanopteronic tail can be obtained by conducting the
fast Fourier transform (FFT) in time- and space-domains
(shown in Fig. 3(c) and (d)). The resonant frequency of
the experimental data shown in panel (c) is 54.93 kHz,
which is found to be directly connected to the relative
motion of the two masses (the primary and the resonator
ones), namely ω0 =

√
κ(1 + 1/ν) (55.45 kHz according

to the DEM). For a traveling wave of speed c, the cor-
responding wavenumber in panel (d) is found to satisfy
the relation ω0 = ck0. In Fig. 3(d), we obtain k0 = 119
m−1 experimentally, which is in agreement with the value
k0 = 120 m−1 obtained via the DEM (see Supplemental

FIG. 3: (a) Numerical and (b) experimental velocity pro-
files of nanoptera formed in a 40 particle chain of 20 mm
rods. (c) Frequency and (d) wave number contents of the tail
constructed by FFT of velocity profiles in specific time- and
space-domains, respectively (particle spot i = 24 and time t
= 0.4 ms).

Material for details [41]).
We now theoretically justify this feature, namely the

existence of the relative motion between the primary
node and the resonator, in the nanopteronic tail of the
observed wave structure. Setting up the so-called strains
of the two fields ri = ui−1 − ui and si = vi−1 − vi, seek-
ing traveling waves therein as ri(t) = R(i − ct) = R(ξ),
si = S(i − ct) = S(ξ) and then using the Fourier trans-
form R(ξ) =

∫∞
−∞ R̂(k)eikξdk (and similarly for S), leads

from Eqs. (1)-(2) to

R̂ =
1

c2
sinc2

(
k

2

)
R̂3/2 +

κ

k2c2
(R̂− Ŝ), (3)

Ŝ =
κ

κ− c2k2ν
R̂. (4)

Substituting Eq. (4) into Eq. (3) and reshaping the rele-
vant expression yields

R̂ =

[
1

c2
sinc2

(
k

2

)
+

1

c4
κ

k2 − k20
sinc2

(
k

2

)]
R̂3/2. (5)

Recall that sinc(x) = sin(x)/x. Invoking the convolution
theorem leads us to write

R(x) = K ∗R3/2 =

∫ ∞
−∞

K(x− y)R3/2(y)dy, (6)

where K(x) = Λ(x) + M(x), where Λ(x) =
(1/c2) max(1 − |x|, 0) and appears in the corresponding
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calculation for the granular chain without internal res-
onators [19]. For M(x) we find

(2c4k30/κ)M(x) = |1− x|(sinc(k0(1− x))− k0) (7)

−2|x|(sinc(k0x)− k0) + |x+ 1|(sinc(k0(x+ 1))− k0).

Thus, the sinusoidal dependence with the periodicity dic-
tated by k0 within M(x) is directly responsible for the
formation of the nanopteronic tails; cf. also the resonant
term in the Fourier space expression of Eq. (5). In the
granular chain without the resonators, the presence of
solely the Λ term in Eq. (5) produces a monotonically
decaying solitary wave according to a double exponential
law [19, 21]. Here, the presence of the sinusoidal terms
within M(x) justifies the form of the nanopteron, where
the localized central wave is supported against the back-
drop of linear relative vibrations between each node and
its corresponding resonator.

Finally, it should be noted that the present setup pro-
vides numerous additional opportunities for a wide range
of studies within this class of models. One such consists
of modifying the rod length. For example, the experi-
mental and numerical results for 80 mm rods is shown in
Fig. 4. In this case, the DEM needs to account for two
internal resonant modes within the rod and hence two
resonators (vi, wi) are attached to each principal node
of the chain (ui). As a result, we observe that in this
case, the large-amplitude striker impact drastically de-
cays through an effective excitation of the internal reso-
nant modes which disperse the energy in both the tem-
poral and the spatial domain. The inset of Fig. 4 depicts
the overlapped profiles of nonlinear waves obtained from
various particle positions, which evidently indicate the
decaying trend of the propagating waves due to the cou-
pling to the resonators. This wave attenuation suggests
that the woodpile periodic structure could be used as an
efficient impact mitigator without relying on damping in
the system. We should note here that although in this ex-
position we have highlighted some of the salient features
of the model, numerous additional details including the
experimental setup, the precise selection of the DEM pa-
rameters and the quantitative nature of the agreement
between theory, numerics and experiment are provided
in Supplemental Material (see e.g. Fig. 8 therein) [41].

Conclusions and Future Challenges. In the present
work, we have offered a prototypical example of a wood-
pile granular crystal, consisting of a chain of orthogo-
nally stacked cylindrical rods. In addition to developing
the experimental techniques enabling a distributed space-
time sensing of the chain, we have provided a theoretical
discrete element model that captures the fundamental
experimental characteristics of the system, while gener-
alizing the standard Hertzian chain via the inclusion of
at least one or modularly more on-site resonators. We
have seen that this inclusion provides the possibility for
a potential breathing traveling wave or even decay of the

FIG. 4: Experimental and numerical space-time wave mod-
ulation results in woodpile woodpile crystals composed of 80
mm rods.

initial strong impulse. More importantly, the relative mo-
tion between each node and the attached resonator pro-
vides the linear mode which constitutes the background
for the formation of a weakly nonlocal solitary wave, i.e.,
a nanopteron. Despite the small magnitude of the tails
of the nanoptera (differing by three orders of magnitude
with respect to the principal wave), we were able to ex-
perimentally observe and compute these tails and to the-
oretically account for the wavenumber/frequency of their
periodicity.

This study leads to a number of topics for potential
future work. From a rigorous mathematical perspective,
proving the existence of the nanopteron provides a novel
set of challenges. At the discrete element model level,
quantifying the properties of the system in the case of
one or more resonators by detailing the interplay between
principal and secondary waves or the role of parametric
variations (such as tuning the resonant frequency of the
coupling between unit cells etc.) would be of particular
interest. It is also relevant to point out that our nu-
merically/experimentally observed nanoptera have a tail
only on one side (i.e., are “one-sided” nanoptera), while
the typical examples previously known have tails on both
sides. Understanding when one-sided vs. two-sided in-
stallments of such coherent structures may arise could
be of particular interest for future work. In the same
vein, considering the results of collisions of two such (e.g.
counter-propagating) waves could also shed light on the
robustness of such one-sided nanoptera, as well as poten-
tially lead to the formation of two-sided variants thereof.
Finally, several questions naturally emerge in experimen-
tal investigations. This includes examining the problem
in the presence of precompression and its generalization
to higher order settings. From a practical perspective,
this woodpile structure can offer a new way to modulate,
localize, or mitigate external impacts for engineering de-
vices and associated applications.
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