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In graphene growth, island symmetry can become lower than the intrinsic symmetries of both graphene and the
substrate. First-principles calculations and Monte Carlo modeling explain the shapes observed in our experiments
and earlier studies for various metal surface symmetries. For equilibrium shape, edge energy variations δE
manifest in distorted hexagons with different ground-state edge structures. In growth or nucleation, energy
variation enters exponentially as ∼ eδE/kBT , strongly amplifying the symmetry breaking, up to completely
changing the shapes to triangular, ribbon-like, or rhombic.

While exfoliation techniques can produce monolayers of
graphene [1] and other two-dimensional (2D) materials [2]
of extraordinary quality [3], their lack of scalability hampers
their use in applications. Chemical vapor deposition (CVD)
synthesis [4] can address the scalability concern. However it is
difficult to produce graphene samples of quality comparable to
exfoliated layers [5], motivating both empirical and theoretical
effort to understand and improve graphene growth.

Because CVD involves a solid substrate in contact with
graphene, their interaction alters the latter’s properties. This
influence cannot be described simply as the interaction of com-
plete graphene crystal with the support. Instead, the relevant
processes occur as graphene assembles. Due to the inherent
difficulty of observing growth in situ, theoretical understanding
is indispensable.

Previous study of the morphology of graphene under ki-
netic or thermodynamic control from atomistic level [6] was
able to predict many observed shapes such as zigzag-edged
(slowest-growing) hexagons [7–9] or dodecagons with 19.1◦

(fastest-etching) [10] and 30◦ (equilibrium shape) angles [11].
All these shapes inherit the hexagonal symmetry of graphene.
Yet, recurring observations of less symmetric shapes call for
a deeper study of the effects of the substrate on the growth
of graphene. In this work we reveal how symmetry break-
ing manifests in graphene growth and results in shapes with
lowered (threefold, twofold) symmetry, using Ni and Cu sub-
strates as examples. For the equilibrium shape of graphene
on the Ni(111) surface, we show using first principles calcu-
lations how tangential ‘sliding’ breaks inversion symmetry
and leads to different atomistic structures at opposite edges of
graphene islands, yet the effect on the Wulff shape is rather
weak. However, since the growth rates contain the energy
terms affected by symmetry in the exponent, we find that under
kinetic control, the asymmetry is amplified, causing a qual-
itative transition from hexagonal (equilibrium) to triangular
(growth) shapes. Nucleation statistics, also exponential in the
symmetry-breaking strength, can cause strong selection of just
one of the two near-degenerate stacking ‘phases’ of graphene.
Casting the atomistic insight into a coarse-grained Monte Carlo
(MC) model of growth, we explain our observations of broken-
symmetry islands on different surfaces of polycrystalline Cu
foil.

Typically, graphene is incommensurate with substrates used

for CVD growth. Without translational invariance even the
most basic concepts such as interface energy and Wulff con-
struction cease to be a reliable foothold. Therefore we first
focus on the important special case of Ni(111) substrate (with
Co(0001) being essentially analogous) where graphene can
stretch by ~1% to accommodate the lattice constant of metal
surface, resulting in perfect epitaxial matching. Since both
the (111) surface and graphene have a sixfold rotation axis, it
is possible to form an interface that preserves this symmetry.
However it turns out to be unstable with respect to tangential
displacements that break the alignment of the C6 axes pro-
ducing other stacking phases which reduce the symmetry to
threefold (or even twofold). Typically one sublattice of carbon
atoms is on top of upper-layer Ni atoms, and the other either in
fcc of hcp sites of the Ni lattice, forming two almost-degenerate
structures (Fig. 1) that differ only in positioning with respect
to the 2nd layer of Ni. Either way the overall symmetry is trian-
gular rather than hexagonal and graphene sublattices become
inequivalent—like in BN [12]. In particular, the six previously
degenerate Z edges split up into two triplets, denoted as ‘∇’
and ‘∆’.

We begin with determining the substrate effect on the equi-
librium shape of graphene on Ni(111). The edge energy for
arbitrary orientation χ can be expressed analytically from basic
armchair (A) and zigzag (Z) edge energies [13], accounting for
inequivalent Z edges: γ (χ) = 2γA sin(χ)+ 2γi sin(30◦−χ).
Here χ is the angle with respect to the closest ∇ direction,
i = ∇ when |χ| mod 60◦ < 30◦, and i = ∆ otherwise. Since the
A edge symmetry is not broken by the substrate, γA is known
from previous work [6], leaving us with just the two zigzag
edge energies γ∇ and γ∆ to compute. As a consequence of
inversion symmetry breaking, not only the energies of ∇ and ∆

edges can be different, but the edges can have different ground-
state atomistic structures. Using density functional theory
computations [14–17] (details in Supplemental Material [18]),
we screened a total of 12 possible combinations: 2 for stacking
(fcc, hcp) × 2 for direction (∇, ∆) × 3 structures (conventional
hexagonal zigzag, Z; Klein, K [19]; pentagon-reconstructed
Klein—e.g. [20]). The pentagon–Klein reconstruction is al-
ways unfavorable. For both stackings, one of the ground-state
edge structures is Z but the opposite side favors K (fcc: K∇||Z∆,
hcp: Z∇||K∆) as top C atoms cannot form in-plane bonds with
Ni atoms and prefer to be three-coordinated. To determine edge
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FIG. 1. (a–h) Stacking of graphene on Ni(111) surface. The substrate (a) is shown in white–gray–black according to the depth. Graphene is
shown in green (b) for fcc and blue (c) for hcp stacking. Graphene edges: (d) hexagonal zigzag, Z; (e) Klein, K; and (f) armchair (showing the
A5’ reconstruction [6]). Edge kinks, k, are shown on Z (g) and K (h) edges. (i) Zigzag edge energies computed with DFT for different stacking
(fcc, hcp), direction (∇, ∆), and edge structure (Z, K) in the on-top and inlay graphene arrangement with respect to the top Ni layer. The bar
width is 0.04 eV/Å or 0.1 eV per edge unit cell, corresponding to ∼ kBT at typical growth temperatures (∼ 1000 K). (j–m) Wulff constructions
for the respective cases: (green) edge energy γ (χ); blue lines denote (solid) Z and (dashed) K edges.

energies in the absence of inversion symmetry, we used a series
of increasingly larger triangular islands with only ∇ or only
∆ edges [12], by fitting their energies as E(N) = aN + b

√
N

where N is the number of atoms [18]. We considered two
scenarios, with graphene flakes on top of the Ni(111) surface
or inlaid in the topmost Ni plane [21]. In all cases (Fig. 1i)
the energies of ∇ and ∆ edges are close, except for the inlay-
hcp case where the ∆ direction is impossible to interface with
the Ni lattice without a large geometrical strain (hence the
outstandingly high value).

By plotting γ (χ) in polar coordinates [22] (green line in Fig.
1 (j–m)) we obtain the Wulff construction. We find that the
equilibrium shapes are truncated triangles (lowered-symmetry
hexagons), except for the case of inlay-hcp stacking. Truncated
shapes were indeed observed on Ni(111) while this manuscript
was in preparation [23], and according to our calculations these
islands should have Klein edges in three out of six directions.
Yet multiple other observations show sharp-cornered triangles
on top of metal surface [21, 24], impossible to explain thermo-
dynamically (Fig. 1). This compels us to investigate growth
kinetics.

Our “nanoreactor” model of graphene growth [6] is natu-
rally extendable to the case of inversion-inequivalent zigzag
edges. We consider only the ground-state edge structures in
the on-top scenario. Carbon atoms are added sequentially to
the edges (Fig. S1 [18]) obtaining the free energy sequences
shown in Fig. 2 for (a) fcc and (b) hcp stacking. The familiar
‘nucleation–kink flow’ picture is clearly observed in this plot
[6]. In either stacking, the hexagonal Z edge (blue solid line)
has a higher free energy barrier for the formation of a new
atomic row than K (blue dashed line): 2.24 vs. 1.49 eV for fcc
and 2.20 vs. 1.633 eV for hcp (difference ∆E ≈ 0.6–0.7 eV).
And because the rate of formation of new atomic rows at the
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FIG. 2. (a, b) Free energy evolution during graphene edge growth
in (a) fcc and (b) hcp stacking: (blue, solid) Z, (blue, dashed) K,
(green) intermediate, and (red) armchair edges. (c, d) Kinematic
Wulff constructions for (c) fcc and (d) hcp stackings: (green) polar
plot of edge growth velocity, (red) velocity of armchair edges, (blue)
velocity of Z edges. K edges are absent from the construction. The
temperature is set high (0.3 eV) in order to ‘compress’ the plots in the
radial dimension.

edge depends on these energy barriers exponentially, K edges
will grow much faster than Z and disappear from the growth
shape. The closed-form expression for graphene edge growth
velocity [6] can be used (with appropriate modifications to
account for broken symmetry) to plot the kinematic Wulff con-
structions. As seen in Fig. 2 (c,d), the result is a triangle with
Z edges, ∆ for fcc stacking and ∇ for hcp.

The essentially equal values of rate-limiting barriers EZ for
the hcp and fcc stackings predict similar growth rates. However,
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FIG. 3. Free energy as a function of number of atoms in an island
(∆µ = 0.3 eV) for (a) inlay and (b) on-top scenarios.

to assess their relative abundance one also needs to consider
nucleation [25]. Based on the edge energies and difference be-
tween fcc and hcp 2D bulk energies (∼ 0.03 eV/atom from the
computations) the free energy of an island can be expressed as a
function of its area (number of atoms), G = (ε−µ)N+cγ

√
N,

where ε is the 2D ‘bulk’ energy of the respective graphene
phase, µ is the chemical potential, γ is the edge energy, and c
is a form factor to discriminate between triangles and hexagons
(which we approximate as perfect). Fig. 3 shows free energy
G(N) plots for the two ‘phases’ at a chemical potential bias
of µ − ε f cc ≡ ∆µ = 0.3 eV for the (a) inlay and (b) on-top
scenarios. In the former scenario (a), despite the triangular
shape of hcp domains, low edge energy yields a much lower
nucleation barrier—by 1.54 eV in this example. This leads to

a nucleation rate difference e
(

G∗hcp−G∗f cc

)
/kBT ∼ 106 in favor of

the higher-energy hcp phase. Here again exponentiation greatly
amplifies the symmetry-breaking effect (compared to the ratio
of γ which is only ∼ 1.5). While the growth shapes of the
two phases are oppositely oriented (Fig. 2 (c,d)), selective nu-
cleation eliminates one of the two possibilities. This explains
the recent observations of co-oriented graphene triangles on
Ni(111) [26].

In contrast, for graphene islands on top of the surface the
nucleation barrier difference is merely on the order of kBT
(b), implying weak if any selectivity (the hcp–fcc preference is
reversed around ∆µ = 0.18 eV). Indeed, both phases were iden-
tified via characteristic ‘translational grain boundary’ defects
[27] and by direct observations [28].

While Ni(111) provides a convenient system for atomistic
analysis, symmetry-breaking effects are equally important for
other substrates without perfect epitaxy with graphene, the
foremost being copper. Fig. 4 (a) presents a scanning elec-
tron microscope image of graphene islands on a Cu foil. The
growth was carried out in a tube furnace CVD system, similar
to previous work [9]. For this sample we used an oxygen-free
Cu substrate with 0.1 torr H2 pressure and 10−3 torr methane
pressure. The growth temperature was 1035 °C and the growth
time was 20 min. Several Cu grains are seen, with many
graphene islands (dark) on each. Even though all graphene
islands grew simultaneously at the same conditions, we see
two distinct shape classes. Nearly all islands are hexagonal, but
some are almost perfect while others are elongated. All islands
on a single Cu grain belong to the same class (except for cases
with several islands colliding within the same grain or across

FIG. 4. (a) Scanning electron microscopy image of graphene grains
on a polycrystalline Cu foil with two largest grains highlighted in
color. (b–h) Monte Carlo modeling of growth: (b) isotropic kinetics,
Cu(111); (c) triangle with a 103 (7kBT ) difference between growth
probabilities for ∇ and ∆ directions, representing Ni(111); (d) triangle
with a 101 (2kBT ) ∆ : ∇ probability ratio; (e) two slow directions,
representing the rectangular Cu(110) surface; (f) two slow directions
with two degenerate orientations, Cu(100); (g) same as (e) but with
two fast directions; (h) calculations with diffusion. All simulations
were run for 30 000 steps. Brightness represents time (lighter cells
are more recently added).

the boundaries [29]). Furthermore, graphene islands on each
grain are aligned, which is especially noticeable for elongated
islands. The density of islands and their size is similar between
the grains. This suggests that the basic underlying mecha-
nisms in their growth are the same, and the shape difference
is determined by subtle differences between crystallographic
surfaces of Cu. Indeed, electron back-scatter diffraction studies
established that hexagonal domains form on Cu(111), while
elongated domains grow on Cu (100) or (110) [9, 30].

To understand the shapes in Fig. 4 (a) we consider the sym-
metry of the graphene+Cu system. Though the (111) surface
is triangular, translational incommensurability of the lattices
means that a growing edge will have a different positioning
with respect to the underlying Cu atoms at different times, and
on average, the symmetry-breaking effects will compensate.
Interestingly, this precludes the sliding mode of symmetry
breaking (as in Ni(111)) and restores the C6 symmetry for the
composite system. For rectangular (110) and square (100) sur-
faces, two parallel graphene edges should align with one of
the orthogonal basic crystallographic directions of the surface,
but the other four edges will remain misaligned with the sub-
strate. Thus the six edges will be split in two sets of two and
four (unlike three and three on Ni). During kink-flow growth,
incommensurability of edges with the underlying substrate
will again be averaged out, but this time the averaging will
differ between the families. Again, the rotational symmetry of
graphene islands is reduced to the common divisor of 6 and 2
or 4, respectively, i.e., C2.

Building on the understanding of how the substrate modu-
lates the growth velocities in different directions one can model
this and other possibilities using coarse-grained MC simula-
tion as follows. Graphene is represented by a triangular lattice
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(nodes are hexagon centers), starting with a single occupied
point. At each time step, all vacant cells with occupied neigh-
bors are classified either as Z sites (three occupied neighbors
along a straight line) or k (kink; armchair edge is an ‘array of
kinks’ [31]). The relative probability P of addition to a Z site
(nucleation of a new atomic row, P≡ PZ/Pk ∼ exp (Ek−EZ)/kBT

in the atomistic calculations) is the input parameter. Prob-
abilities of all sites form a distribution which is sampled to
determine the next site to be occupied, and the process is iter-
ated. As a result we obtain the shape in Fig. 4 (b), which is
the familiar graphene hexagon frequently observed on Cu(111)
[7, 9], liquid Cu [8], and in Fig. 4 (a), in agreement with the
nanoreactor model predictions for isotropic substrates [6].

Recalling our analysis of growth kinetics on Ni (Fig. 2), the
essential physical insight that explains triangular growth shapes
is the difference between probabilities to initiate a new row
on Z vs. K edges. Our MC model can naturally capture this
with two independent parameters for two inequivalent crystallo-
graphic orientations of Z edges, P∇ and P∆. Fig. 4 (c) shows the
sharp triangle from a run with P∆/P∇ = 10−3, corresponding
to our first-principles results for ∆E. Only ∆ edges are present,
and it is in perfect agreement with the analytical kinematic
Wulff shape of Fig. 1. Fig. 4 (d) shows the truncated triangle
produced in a run with P∇/P∆ = 10−1, barely showing any ∆

edge fragments. Thus, six-sided shapes are only possible when
the growth barrier difference is small, |E∇−E∆| . 2–3kBT ,
or no more than 0.2 eV for typical graphene CVD conditions,
which is a rather close coincidence.

For rectangular surfaces such as Cu(110) or Ge(110) [32],
or twofold-symmetric stackings on Ni(111), two input proba-
bilities are again needed, now for the two ‘horizontal’ and four
‘diagonal’ directions, P= and P〈〉. Typically one would expect
the edges that are aligned with close-packed surface ‘grooves’
to grow slower, resulting in P= < P〈〉. This produces elongated
shapes such as Fig. 4 (e), closely resembling the high aspect
ratio islands in Fig. 4 (a). Cu(100) is similar, but there are
now two orthogonal close-packed directions for long graphene
edges to align with. This will produce two rather than one
preferred alignments at a 90°angle with each other within the
same Cu grain (Fig. 4 (f)) as observed experimentally [30, 33].
Finally, if P= > P〈〉, the shape shown in Fig. 4 (g) results.

It is remarkable how a simple MC model informed by atom-
istics allows a unified description of Ni(111), all surfaces of Cu
(including liquid), and pretty much any metal surface without
an epitaxial match with graphene just based on its symmetry.
It can similarly be applied to model any other graphene-like
material with inequivalent sublattices, such as BN [34, 35] or
transition metal dichalcogenides. By the same token, growth
units larger than hexagons [36] can be treated. Going even fur-
ther one can emulate diffusion in this model. This is achieved
by making the growth probabilities depend not only on site
type, but also on the number of unoccupied cells within some
distance. Edges of protrusions have better access to feedstock
supply at the free catalyst surface, producing diffusion insta-
bilities. This refinement reproduces sawtooth patterns seen
on the edges of metal chalcogenide islands [37, 38] with a

characteristic dendritic but not finger-like morphology (Fig. 4
(h)), reminiscent of the Sierpinski fractal.

In summary, the symmetry of emergent carbon islands re-
flects not the symmetry of graphene per se but rather the com-
bined symmetry of its stacking on a substrate surface, which
generally is lower than either graphene (hexagonal) or the
surface (hexagonal, square, rectangular. . . ). On epitaxially
matched surfaces such as Ni(111) or Co(0001) the symmetry
breaking effect is particularly apparent at the edges, resulting
in different ground-state structures (Z vs. Klein) for differ-
ent directions (∇, ∆), and causing equilibrium shapes with a
(typically, mild) violation of inversion symmetry. However,
in kinetics, the symmetry-lowering interactions become ex-
ponentially amplified as ∼ exp(−E/kBT ), and Klein edges
grow much faster than Z, resulting in triangular growth shapes
with only Z edges. Similarly, exponentiation can make sym-
metry effects strongly pronounced in nucleation, so that edge
energy differences can play a decisive role in selection of the
graphene–Ni(111) stacking. We apply this insight to growth
on Cu, where different graphene island morphologies are con-
currently observed on different crystalline grains of the same
foil, using a Monte Carlo growth model that draws upon our
Ni(111) analysis but can be tuned to any substrate symmetry,
commensurate or incommensurate with graphene, crystalline
or liquid. Since crystal symmetry of the substrate dictates both
the shape of islands and their alignment, single-crystalline
substrates offer better control over both the morphology of
graphene islands and grain boundaries in the resulting films.
This improved understanding of the role of substrate symmetry
in graphene growth is crucial for improving the quality [4] or
engineering grain boundaries [5] in CVD graphene.
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