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A puzzle of oceanic dynamics is the contrast between the observed geostrophic balance, involving
gravity, pressure gradient and Coriolis forces, and the necessary turbulent transport: in the former
case, energy flows to large scales, leading to spectral condensation, whereas in the latter it is trans-
ferred to small scales, where dissipation prevails. The known bi-directional constant-flux energy
cascade maintaining both geostrophic balance and mixing tends towards flux equilibration as turbu-
lence strengthens, contradicting models and recent observations which find a dominant large-scale
flux. Analyzing a large ensemble of high resolution direct numerical simulations of the Boussinesq
equations in the presence of rotation and no salinity, we show that the ratio of the dual energy flux
to large and to small scales agrees with observations, and we predict that it scales with the inverse of
the Froude and Rossby numbers when stratification is (realistically) stronger than rotation. Further-
more, we show that the kinetic and potential energies separately undergo a bi-directional transfer
to larger and smaller scale. Altogether, this allows for small-scale mixing which drives the global
oceanic circulation and will thus potentially lead to more accurate modeling of climate dynamics.

Solar heating, tides and wind stresses are global-scale
energy inputs [1], while in the Southern Ocean, topo-
graphic gravity waves provide a small-scale source [2],
contributing roughly 50% of its energy [3]. The global
ocean acts in a coherent, though complex, fashion from
the planetary to the dissipation scale, ≈ 1mm, with dif-
ferent phenomena interacting like inertia-gravity waves
and nonlinear structures such as eddies, zonal jets [4]
or fronts [5]. It is known that inverse and direct cas-
cades, respectively to large and small scales as observed
in geophysical fluids [6] and heliospheric plasmas [7, 8],
can coexist in the purely rotating case [9], as well as
in oceanic models [10]. It was shown recently that a
dual constant-flux cascade of energy to both large scales
and small scales occurs in rotating stratified turbulence
(RST) [11]. Moreover, the ratio RΠ = |ǫL/ǫs| of the total
energy fluxes to large and small scales, ǫL and ǫs, tends
to unity as turbulence becomes dominant as is the case in
geophysical and astrophysical fluid dynamics [11]. How-
ever, recent studies using altimeter data analyzing Sea-
Surface Height (SSH) in the Southern Ocean, SSH being
a proxy for the horizontal velocity field of near-surface
currents, and numerical modeling introducing a positive
eddy viscosity to represent the effect of the direct en-
ergy cascade, show that RΠ remains typically between
the values 3 and 7 [12, 13].

What is the origin of this discrepancy? To answer this
question we develop a simple model and conduct an un-
precedented study of this problem by means of high res-
olution direct numerical simulations (DNS) of the rotat-
ing stably-stratified Boussinesq equations. Altogether,
26 runs were performed, 6 on grids of 20483 points, and
20 on grids of 10243 points. Rotation plays an essen-
tial role in the building-up of large scales, e.g. through
vortex mergers. However, for purely stratified flows, this
phenomenon disappears and sharp vertical gradients de-

velop instead. In RST, the disappearance of the inverse
cascade, diagnosed through the absence of energy growth
in time, appears for large N/f [14–16], which is thus a
key parameter varying widely, from ≈ 10 or less in the
abyssal Southern Ocean at mid latitude, to ≈ 100 or more
in the stratosphere; N is the Brunt-Väisälä frequency of
gravity waves, and f = 2Ω that of inertial waves, Ω being
the rotation rate.
Equations: We integrate the Boussinesq equations for

an incompressible velocity field u, with ∇ · u = 0:

∂u

∂t
+Nθẑ + f ẑ × u− ν∇2u− Fv = −∇p− u · ∇u(1)

∂θ

∂t
−Nu · ẑ − κ∇2θ = −u · ∇θ . (2)

θ represents temperature (or density) fluctuations.
With ∂z θ̄ the background imposed stratification, N =
√

−g∂zθ̄/θ0; p is the pressure normalized to a unit
mass density, Pr = ν/κ is the Prandtl number, with
ν the kinematic viscosity and κ the diffusivity. We take
Pr = 1, as suggested by the framework of the renormal-
ization group [17]. The other dimensionless parameters
are the Reynolds, Rossby and Froude numbers, and buoy-
ancy Reynolds:

Re =
U0LF

ν
, Ro =

U0

LF f
, Fr =

U0

LFN
, RB = ReFr2 ,

(3)
with U0, LF characteristic velocity and length scales.
The momentum forcing Fv is random, three-dimensional
and isotropic; it is applied in the shells kF = 2π/LF ∈
(10, 11) for all runs but one, for which kF ∈ (7, 8). The
equations are solved in a triply periodic cubic domain
of 2π dimension with n3

p points; time evolution is done
with a second-order Runge-Kutta scheme and we use the
Geophysical High-Order Suite for Turbulence (GHOST)
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FIG. 1: (a) Horizontal cut of vertical vorticity: one ob-
serves large-scale filaments and small-scale gradients, together
with intense localized vortex streets as seen e.g., for x=1700,
y=300. (b) Time evolution of integral scales based on velocity
(circles) and temperature (triangles) for the same run. After
an initial transient phase, the former grows significantly in
time, while the latter has a slow growth.

hybrid-parallelized code [18]. In the ocean, salinity and
temperature contribute to density variations; mixing is
due to a combination of shear instability, gravity-wave
steepening and double diffusion leading to salt fingering
[19], but the convective instability itself may not be the
main feature when compared to baroclinic instabilities.
Thus, as a first step in our study, salinity is not included.
Taking the Fourier transform of equation (2), one defines
the kinetic isotropic energy flux:

ΠV (k) =

∫ k

kmin

TV (q)dq , TV (q) = −
∑

Cq

û⋆
q
· ̂(u · ∇u)

q

with Cq the shell q ≤ |q| < q + 1; ΠP = −dtEP is com-
puted in a similar way. The total flux is Π = ΠV + ΠP ,

with
∫ k

0
Π(p)dp = −dtE.

A dual constant-flux energy cascade: The development
of both large and small scales in RST flows can be ob-
served on the vertical vorticity field [ωz = ∇ × v] · êz
shown in Fig.1a (with êz the unit vector in the ver-
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FIG. 2: (a) Compensated kinetic energy spectra with in the
inset the time evolution of kinetic energy (solid) and of its
(normalized) dissipation (dashed); 30τNL ≈ 600+N−1 for
Fr ≈ 0.047, N/f = 7, Re ≈ 2 × 104. The large scales follow

a ∼ k−5/3 spectrum, whereas at small scales, EV (k) ∼ k−2.5;
the spectra cross at kF ≈ 10.5. (b) Total energy flux, nor-
malized by ǫV = 〈u · Fv〉, for 2 ≤ N/f ≤ 10.5 and runs with
similar Froude and Reynolds numbers (0.045 ≤ Fr ≤ 0.047,
Re ≈ 2× 104).

tical direction, co-linear with rotation and gravity), as
well as on the vertical velocity [11]. The snapshot in
Fig.1a is for a flow on grid of 20483 points, N/f = 10.5,
Re ≈ 2 × 104 and Fr ≈ 0.047. The simultaneous pres-
ence of small-scale and large-scale features can be diag-
nosed on the temporal evolution of the integral scales
LX
int =

∫

[EX(k)/k]dk/
∫

EX(k)dk , with X=V or X=P,
displayed in Fig.1b and associated with the kinetic and
potential energy spectra EV,P (k). In a three-dimensional
turbulent flow, LV

int grows slowly with time [6]. Here,
the scale associated with velocity fluctuations LV

int grows
quasi-linearly, typical of vortex mergers, whereas LP

int has
a slower growth (see also [35]). We show in Fig.2a the ki-
netic isotropic energy spectrum at the final time of a run
with N/f = 7, t/τNL = 29 where τNL = LF /U0 is the

turn-over time; it is compensated either by αǫ
2/3
V k−5/3
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or by αǫ
2/3
V k−2.5, with ǫV = 〈u ·Fv〉 and α being a pro-

portionality constant. Two ranges clearly appear, sepa-
rated by kF . The large-scale inertial index corresponds to
that of the inverse cascade of energy in two-dimensional
flows [20], and the Kolmogorov constant, read from the
vertical axis of Fig.2a, is C′ ≈ 10, close to the classic case
of 2D turbulence, for which C′ ≈ 7 is found [21].
The small-scale spectrum is steep, as seen in numerous

computations [22–24], and oceanic observations [13, 25].
It is argued in [25] that these variations are compatible
with the weak-turbulence theory for such flows. The inset
gives the temporal variation of the scaled dissipation and
kinetic energy for that run, with an energy growth typical
of inverse cascades.
Scaling model for the energy flux ratio: One observes

different spectra in the wave turbulence (WT) regime,
the cascade rate to small scales being smaller the smaller
the Froude number. This can be seen through a sim-
ple dimensional argument, when modeling the slowing-
down of nonlinear interactions in the presence of waves,
by stating that the transfer time of energy is longer than
the turnover time τNL as τtr = τNL ∗ Fra, a < 0; thus,
ǫs = ǫK ∗ Fra, where ǫK = EV /τNL = U3

0
/LF is the en-

ergy transfer rate for homogeneous isotropic turbulence
(HIT). Indeed, we know that in WT, the small-scale flux
is diminished, compared to ǫK in proportion to the rela-
tive strength of the waves, with a = −1 at lowest order in
the expansion, corresponding to three-wave resonances.
This argument is compatible with the energy spectra for
the purely rotating case [26, 27]. Similarly, one can ar-
gue that at fixed stratification, the cascade rate to small
scales is weaker for stronger rotation.
However, the direct cascade of energy in RST is likely

dominated by stratification, following, e.g. the argument
in [28] that strong gradients develop in the vertical so
that the Froude number based on a vertical length scale
is of order one. On the other hand, one expects that
the larger the rotation, the more efficient the inverse cas-
cade is, compared to the direct cascade rate, irrespective
of the strength of the latter, so that at fixed stratifi-
cation, RΠ ∼ Rob|Fr

, b < 0 (see also [9]). Indeed, in

the presence of rotation, however weak (but still with
Ro < Roc, Roc ≃ 1 being a critical Rossby number for
the onset of an inverse cascade), there is a channel for
the energy to go to larger scales, in a proportion that is
greater for stronger rotation. Thus, altogether and as-
suming for simplicity a = b:

RΠ = |ǫL/ǫs| ∼ [Fr ∗Ro]−1 . (4)

This phenomenological argument is corroborated by the
results of our study, summarized in Fig.3 in the form
of three scatter plots. Each data point represents a run
with different parameters in the ranges: 2 ≤ N/f ≤ 10.5,
0.02 ≤ Fr ≤ 0.14, 0.09 ≤ Ro ≤ 0.76, 6400 ≤ Re ≤ 39000
and 4 ≤ RB ≤ 313.
The simplest observation stemming from this extensive

high-resolution study is that the flux ratio varies substan-
tially. Also, for fixed Froude and Reynolds numbers, thus
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FIG. 3: Scatter plots of RΠ as a function of (a), Fr and
(b,c), Fr ∗Ro, in lin-log and log-log coordinates respectively.
(a) Points in are labeled by their final RB ; the 6 runs with
20483 grids have 16500 ≤ Re ≤ 39000 (black symbols) while
the others use a 10243 grid and 6400 ≤ Re ≤ 10000 (blue
symbols). (b) The 6 runs with low RB shown in (a) with
empty symbols are eliminated in (b,c); the same symbols are
used but colors now indicate three ranges for N/f . The green
vertical bar gives a plausible interval of RΠ values for the
ocean [12, 13]. The inset in gives the slope of the variation of
RΠ with Fr∗Ro for various N/f . Error bars on RΠ are based
on the standard deviations associated with the averages of the
fluxes over about a decade of scales. (c) Scatter plot of the
ratio of kinetic energy fluxes (green symbols), or potential
energy fluxes (black symbols), RΠV,P

, for flows with a bi-
directional energy transfer with negative flux for k < kF and
positive for k > kF . The inset shows energy fluxes for velocity
(solid) and temperature (dashed), for the same flow as in
Fig.2a (N/f = 7).
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fixed RB, this ratio varies by one order of magnitude (see
the legend in Fig.2b), indicating thatRB is not the deter-
mining parameter, provided it is large enough, but that
rotation plays an essential role in the energy distribution,
even if weak compared to stratification.
Five main trends are detected from these plots. (i)

The energy flux to large scales, relative to that to small
scales, becomes weaker (although it does not disappear
entirely) for larger N/f . (ii) However, for RB of order 17
or below (data points with empty symbols), the ratio of
fluxes follows an unrelated trend, indicative of a different
regime (Fig.3a); the existence of RB-dependent regimes
has been advocated by several authors (see e.g. [29]); in-
deed, for RB < 1, the Ozmidov length scale at which
isotropy recovers is smaller than the dissipation scale,
and strong turbulence cannot develop. (iii) Setting aside
the high values of RB for N/f = 2 (up to ∼ 300), and
the values lower than ≈ 17, the rest of the study is done
for 26 ≤ RB ≤ 57, and in that range, RΠ displays a
variation of two orders of magnitude determined by the
intrinsic dynamics of the flow, and not RB itself. (iv)
a transition in the rate of variation of RΠ with Froude
number occurs around [N/f ]C = 7 (Fig.3b). And (v) in
roughly one third of the runs, there is a dual energy trans-
fer separately for the kinetic and the potential modes,
with negative fluxes at large scales and positive at small
scales. This is shown in Fig.3c (inset) where the flux ratio
is also plotted individually for EV and EP , the former
dominating the latter.
In Fig.3b the data is plotted against Fr ∗ Ro, as sug-

gested by the preceding phenomenological analysis (equa-
tion (4)). One sees that the points are rather well aligned,
with a slope close to −1 for moderate values of N/f . For
larger N/f , this slope is close to −2, indicative of two
regimes in N/f (see inset). The origin of this transi-
tion is not clear. There is a known change of regime in
N/f , attributed to the lack of resonant interactions in the
range 1/2 ≤ N/f ≤ 2 [30]. One could argue that higher-
order wave terms in a weak turbulence expansion would
involve interactions with more than 3 waves, thereby in-
ducing a shift in the transitional values of N/f , as well
as resonance broadening, and that might induce a shift
in the behavior for larger N/f . Another possibility is as-
sociated with finite size effects, i.e. to the limited ratio
between the forcing scale and the overall size of the flow,
or the Rossby deformation radius.
The abyssal Southern Ocean: This study is done in

the general context of the interactions between different
types of waves and turbulent eddies and their influence
on the overall distribution of energy in RST. When re-
casting it in the specific context of the abyssal Southern
Ocean at mid latitudes, typical parameters are as fol-
lows. Lee-wave generation due to bathymetry is known
to occur at scales between 200− 2000 m, with a peak at
800 m [2], so we take LF = 450 m, and an overall do-
main size of 4500 m. The amplitude of the forcing is such
that the mean geostrophic wind is U0 = 0.02 m/s (see

e.g. [3]). Finally, we choose ν = 4.5×10−4m2 s−1, giving
Re = 2 × 104; this value is imposed by the grid resolu-
tion of the DNS and is still low compared to geophysical
values. This leads to a (Kolmogorov) energy dissipation
rate of ǫK = U3

0 /LF ≃ 1.8 × 10−8m2s−3 per unit mass,
comparable to, although larger than, measured values.
The Coriolis parameter is chosen as f = 1.2 × 10−4s−1,
and N = 1.26 × 10−3s−1 as determined by direct mea-
surements for example in the Drake passage [3], leading
to N/f ≈ 10.5. Thus, the Froude number is Fr ≈ 0.035,
RB ≃ 25 and the Rossby number is 0.37, large but still
leading to the occurrence of an inverse cascade [14]. The
value of the flux ratio extrapolated for Fr = 0.035 and
Ro = 0.37 using Fig.3b is ≈ 4.1 (green star), within
the bounds of measured values in the ocean (from 3 to
7, as reported in [12, 13]) indicated by the green bar in
Fig.3b. For these parameters, Fr ∗ Ro = 0.013 and the
effective energy dissipation is ǫW ∼ ǫK ∗Fr ≈ 6.3×10−10

Watts. Two effects are likely to be balancing each other
in achieving such a reasonable agreement of our simu-
lations with the observations. On the one hand, higher
RB as found in geophysical flows will likely lead to an
equipartition of fluxes [11]. But on the other hand, the
fact that the ocean and the atmosphere have a small as-
pect ratio may weaken the direct cascade as found in [31].
Thus, above a threshold inRB (here found ≈ 17), one en-
ters a generic turbulent regime modulated by waves and
depending on a balance between rotation and stratifica-
tion. This suggests that indeed small-scale dissipation
can be parametrized using the estimation of ǫW stem-
ming from weak turbulence phenomenology, and/or us-
ing measurements of RΠ.

Conclusion: The balance between inverse and direct
energy fluxes in rotating stratified flows is found in this
paper to be close to oceanic values when using realistic
parameters in DNS. One can estimate that globally the
small-scale dissipation is between 20% and 25% of the
available energy, thus alleviating the long-standing issue
in ocean and climate dynamics concerning the amount
of energy dissipation. Performing modeling of such flows
may mis-represent small-scale statistics, as shown for ex-
ample in [32], but recent numerical experiments at mod-
erate resolution using such a technique [33] do find an
inverse cascade of energy for Boussinesq flows. The find-
ings presented herein thus might help devise more real-
istic turbulence closures for the atmosphere and ocean.
This will lead to a better assessment of mixing in the
ocean and thus to a better estimation of the global cir-
culation affecting climate dynamics [34].
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