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Due to their low energy content microwave signals at the single-photon level are extremely chal-
lenging to measure. Guided by recent progress in single-photon optomechanics and hybrid optome-
chanical systems, we propose a multimode optomechanical transducer that can detect intensities
significantly below the single-photon level via adiabatic transfer of the microwave signal to the opti-
cal frequency domain where the measurement is then performed. The influence of intrinsic quantum
and thermal fluctuations is also discussed.
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Introduction. The microwave frequency domain of the
electromagnetic spectrum is the stage of a wealth of phe-
nomena, ranging from the determination of the quantum
energy levels of superconductor nanostructures to the ro-
tational modes of molecules and to the characterization
of the cosmic microwave background. Several detection
schemes sensitive to microwave radiation at the single-
photon level have been demonstrated. Examples include
semiconductor quantum dots in high magnetic field [1],
circular Rydberg atoms in cavity QED setups [2–4], and
superconducting qubits in circuit QED [5, 6]. An alter-
native approach involves the use of linear amplifiers [7].
These devices allow the reconstruction of average am-
plitudes [5] and correlation functions [8] and may oper-
ate both as phase-preserving (insensitive) [9] and phase-
sensitive [10, 11] amplifiers, but they require an integra-
tion over many events to achieve a sizable signal.

Even though there have been proposals and experi-
ments to realize a photon-multiplier in the microwave
regime [12–14], no general purpose efficient single photon
detector has been developed so far, as photon energies in
that frequency domain are in the millielectronvolt range,
three orders of magnitude smaller than in the visible or
near-infrared spectral regions. On the other hand, in the
optical frequency domain a variety of ultra-sensitive de-
tectors have been developed over the past sixty years.
This suggests that an alternative route for the detec-
tion of feeble microwave signals is via their conversion
to the optical frequency domain. Photonic front-end mi-
crowave receivers based on the electro-optical effect [15]
and atomic interfaces based on electromagnetically in-
duced transparency have exploited non-linear conversion
to this end [16, 17]. The main limitations in sensitivity is
the small strength of the interaction and the fluctuations
of the optical driving fields.

Recent advances in nano- and optomechanics offer an
attractive approach to engineer interactions of light and
mechanics that achieve that goal via the radiation pres-
sure force, see Ref. [18] for recent reviews. Several the-

oretical proposals have considered the optomechanically
mediated quantum state transfer between microwave and
optical fields [19–22] and have emphasized the potential
of hybrid systems as quantum information interfaces [23–
26], in which case state transfer fidelity is of particular in-
terest. Developments of particular relevance include the
experimental realization of coherent conversion between
microwave and optical field based on a hybrid optome-
chanical setup [27–29]. The present work has the differ-
ent goal to convert the mean intensity of a feeble, narrow-
band microwave signal to a signal at an optical frequency
where detection can proceed by traditional methods.

One key aspect of this proposed detector is that it re-
lies on an off-resonant, multimode process. This is mo-
tivated by the need to manage and minimize the ther-
mal mechanical noise, as well as to circumvent the effect
of the fluctuations of the driving electromagnetic fields
required to ensure a strong enough optomechanical cou-
pling. These sources of noise can be significantly reduced
by (i) working in a far off-resonant regime with respect
to the mechanics; (ii) using pumping fields that drive
ancillary cavity modes different from those at the sig-
nal frequencies, for both microwave and optical; and (iii)
exploiting the polariton modes of the cavity-mechanics
system to perform the frequency conversion of the signal
via a modulation of the detuning of the optical pump.

The system. The proposed sensor is comprised of a
mechanical oscillator optomechanically coupled to both
a microwave and an optical multimode resonator, see ide-
alized setup in Fig. 1.

Consider first the microwave cavity. To avoid the noise
connected with the pumping field while still maintaining
a large optomechanical coupling strength, we adopt a
multimode configuration where a strong optomechanical
coupling is provided by an auxiliary field at frequency
ωbp different from that of the signal to be detected, see
Fig. 1(b). This three-mode optomechanical interaction is
described by the Hamiltonian [30–32]

V3m = ~gb0(b̂p + b̂)†(b̂p + b̂)(ĉ+ ĉ†), (1)
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Figure 1: (a) Dual-cavity optomechanical system. (b) Sketch
of the heterodyne-like pumping scheme with the microwave
signal and the driving field near-resonant with cavity mode b
and ancilliary mode bp, respectively. Similarly in the optical
side.

where gb0 is the single microwave photon optomechani-
cal coupling constant. We assume that ωbp is resonant

with a longitudinal cavity mode, while the signal field b̂,
assumed to be extremely weak, is slightly detuned from
another mode of frequency ωb. In the displaced picture
for b̂p and ĉ, b̂p → βp + b̂p and ĉ → C + ĉ, the Hamilto-
nian (1) becomes

V3m,eff = ~Gb(b̂+ b̂†)(ĉ+ ĉ†) + ~xcgb0(b̂pb̂
† + b̂†pb̂)

+ ~Gb(b̂p + b̂†p)(ĉ+ ĉ†). (2)

The first term is the usual linearized optomechanical cou-
pling between the signal mode b̂ and phonon mode ĉ with
strength Gb = βpgb0. We assume that the pump field is
phase locked so that Gb is real and positive. Its fluctua-
tions feed into the system as noise through the second and
the third terms of V3m,eff which arise from the scattering
and the optomechanical coupling of the pumped mode,
respectively. The second term, proportional to the steady
position quadrature of the phonon field, xc = C+C∗, can
be safely neglected under the condition |xc| ≪ |βp| which
is easily realized [33] in the mirror-in-the-middle geome-
try of Fig. 1. Finally, the third term results in contribu-
tions to the system dynamics at a frequency that differs
from the first term by ±(ωb − ωbp). This difference is of
the order of the free spectral range of the cavity (for lon-
gitudinal modes) so that it can easily be filtered out in a
manner familiar from heterodyne detection. For the nar-
row band detection scheme considered here it is therefore
sufficient to keep only the first term in the Hamiltonian
(2).
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Figure 2: Eigenfrequencies of the normal modes (polari-
tons) as functions of optical detuning ∆a/ωm for the case
−Ga/ωm = Gb/ωm = 0.1 and ∆b/ωm = −0.4. Dashed lines:
non-interacting energies of the bare modes. We have framed
the part of the spectrum spanned by ∆a during the conversion
process.

Following a similar argument for the optical fields the
effective Hamiltonian for the full system becomes

H = ~ωmĉ†ĉ− ~∆aâ
†â− ~∆bb̂

†b̂

+ ~Ga(â+ â†)(ĉ+ ĉ†) + ~Gb(b̂ + b̂†)(ĉ+ ĉ†), (3)

where â, b̂, and ĉ are the annihilation operators for the
optical, microwave, and (displaced) mechanical modes
with corresponding frequencies ωa, ωb, and ωm. The op-
tical and microwave cavity-pump detunings are ∆a =
ωap−ωa+xcga0 and ∆b = ωbp−ωb+xcgb0, respectively,
with ωap and ωbp the frequencies of the optical and mi-
crowave pumps. Ga and Gb are the effective optomechan-
ical coupling strength set by the steady amplitude of the
pumped ancillary optical and microwave cavity modes.
Note that Ga,b are of opposite signs and the equilibrium
position of the mechanical resonator is set by the relative
strength of the two pumps, so that the microwave drive
needs to have a significantly stronger light flux than the
optical pump.

In the resonant situation ∆a = ∆b = −ωm an effective
interaction follows from performing the rotating wave ap-
proximation, which givesHI = ~Ga(âĉ

†+ĉâ†)+~Gb(b̂ĉ
†+

ĉb̂†). If Ga and Gb are appropriately modulated in time
the system then adiabatically follows a superposition of
cavity modes â and b̂ without any population of the me-
chanical mode ĉ (dark mode) [19, 20]. In contrast, for
the off-resonant case considered here, ∆a,b 6= ωm, the
microwave and optical fields are coupled by a three-level
Raman-like interaction via the mechanical mode.

Normal mode picture. To discuss the microwave to op-
tical conversion process in this effective three-mode con-
figuration, it is convenient to switch to a normal mode
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(polariton) representation of the system [34]. After re-
moving a constant term, the Hamiltonian (3) can be re-
cast in the diagonal form H = ~ωAÂ

†Â + ~ωBB̂
†B̂ +

~ωCĈ
†Ĉ where Â, B̂, and Ĉ are the boson annihila-

tion operators for the normal mode excitations. In gen-
eral, these are superpositions of the optical, microwave,
and mechanical modes. Figure 2 shows their frequencies
ωA,B,C as functions of the optical detuning ∆a. At the
mechanical resonance, ∆a = −ωm, the degeneracy be-
tween the optical photon and the phonon is lifted by the
optomechanical interaction, with an energy splitting of
the order of 2Ga. A second avoided crossing occurs at
the resonance between optical and microwave photons,
∆a = ∆b, with a splitting of the order of 4GaGb/ωm

resulting from the indirect coupling between the electro-
magnetic modes via the mechanical mode.

We focus on the region close to the microwave-optical
resonance framed in Fig. 2. On the left side, ∆a < ∆b

and |∆a −∆b| ≫ 4|GaGb|/ωm the polariton B̂ describes

a microwave-like excitation, with ωB ∼ −∆b and B̂ ∼ b̂,
while for ∆a > ∆b, the polariton becomes optical-like
B̂ ∼ â and annihilates an excitation of frequency ωB ∼
−∆a. The opposite holds for the polariton A, which is
optical-like for ∆a < ∆b and microwave-like on the other
side of the resonance. The polariton C remains phonon-
like in this whole region, indicating that the dynamics of
the mechanical excitation is decoupled from that of the
electromagnetic fields.

Conversion process. When ∆a is slowly switched from
the left to the right side of the resonance the polariton B
adiabatically evolves from the microwave-like excitation
to the optical-like excitation while conserving its popu-
lation, 〈B̂†(t)B̂(t)〉 ≈ 〈b̂†(t0)b̂(t0)〉, where 〈b̂†(t0)b̂(t0)〉
accounts for both the input signal field to be mea-
sured and the microwave cavity noise. Likewise the po-
lariton A, which is initially optical-like, evolves into a
microwave-like excitation while maintaining its popula-
tion 〈Â†(t)Â(t)〉 ≈ 〈â†(t0)â(t0)〉 = 0, where the last
equality holds if the optical mode is initially in a vac-
uum, a condition easy to satisfy.

The adiabaticity of the transfer requires that ∆a be
switched at a rate much slower than the interband sepa-
ration, 1/τ ≪ 4|GaGb|/ωm where τ is the switching time.
In addition it is also necessary that this operation occurs
in a time short compared to the inverse decay rates of
the polariton modes, which are combinations of the cav-
ity decay rates κa,b and the mechanical damping rate γ.
(This condition also ensures that α and β remain con-
stant during the switch of ∆a. )

We describe the detection protocol as a time-gated
three-step process. First, during a “receiving” time win-
dow τr that lasts until t0 the optical detuning is fixed
at ∆a < ∆b with |∆a − ∆b| ≫ 4|GaGb|/ωm and the
microwave cavity captures a narrow-band signal that is
stored in the mode b. During that time the optical mode
a is in a vacuum and the microwave-optical field interac-

tion is negligible due to their large mismatch in frequency.
This is followed by a “transfer” time interval τ starting
at t0 during which ∆a is switched to ∆b at a rate

1/κa,b ≫ τ ≫ ωm/4|GaGb|, (4)

resulting in the signal being transferred into an opti-
cal field without any significant coupling to the exter-
nal reservoirs. Finally, during the detecting time window
τd > t0 + τ the interaction is quenched and the cavities
couple with their environment, thus releasing the optical
output field that can be measured by standard methods.

Input-output dynamics. The analysis of the conver-
sion of the microwave signal to the optical field can be
performed in terms of Heisenberg-Langevin equations of
motion ∂tû = −i[û, Ĥ ]/~−κuû+

√
2κuûin where û are the

annihilation operators for the bare modes {â, b̂, ĉ}, κu are
their dissipation rates (with κc ≡ γ), and ûin account for
the associated noise operators and input fields. In the ab-
sence of input fields the non-vanishing noise correlations
are 〈ûin(t)û

†
in(t

′)〉 = (n̄u+1)δ(t−t′) and 〈û†
in(t)ûin(t

′)〉 =
n̄uδ(t− t′), where n̄u = 1/[exp(~ωu/kBTu)− 1], Tu being
the temperature of the thermal reservoir of mode u. For
the optical field n̄a ≈ 0 in practice.

In the far off-resonant case ωm ≫ |∆a,b|, |Ga,b|, κa,b, γ
we adiabatically eliminate the phonon mode ĉ by insert-
ing its formal solution ĉ ≈ [−Ga(â+ â†)−Gb(b̂+ b̂†)]/ωm

into the equations for the modes a and b while retaining
the mechanical noise term and neglecting the memory ef-
fect. The interaction between the microwave and optical
modes is then described by the equation

∂tâ = (i∆′
a−κa)â+i

2G2
a

ωm

â†+iG′(b̂+ b̂†)+
√
2κaâ

′
in, (5)

where G′ = 2GaGb/ωm, and similarly for mode b with
a ↔ b [33].

In the far off-resonant case, we must keep the anti-
rotating terms in the optomechanical interaction when
adiabatically eliminating the mechanics. This results in
a squeezing contribution to the dynamics of a and b with
the original detuning becoming ∆′

a,b = ∆a,b + 2G2
a,b/ωm

and

â′in = âin−iGa

√
γ

κa

[∫ t

0

e(−iωm−γ)(t−t′)ĉin(t
′)dt′ + h.c.

]
,

(6)
and similarly for b′in with a → b. When we focus on the
signal fields of narrow linewidth around cavity modes, the
noise auto-correlation functions approximately become
〈â′in(t)â

′†
in(t

′)〉 = (n̄a+ma+1)δ(t−t′) and 〈â′in(t)â′in(t′)〉 =
−maδ(t − t′), with ma = (G2

aγ/ω
2
mκa)(2n̄c + 1), with

also the appearance of cross-correlations characteristic of
a squeezed two-mode reservoir, 〈â′in(t)b̂′†in(t′)〉 = mabδ(t−
t′) and 〈â′in(t)b̂′in(t′)〉 = −mabδ(t − t′) where mab =
(GaGbγ/ω

2
m

√
κaκb)(2n̄c + 1) [33]. The output fields are

similarly modified, with the indices “in” replaced by “out”
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and ĉout = −ĉin in this far off-resonant case. Note that
the weak coupling assumption |Ga,b|/ωm ≪ 1, which al-
lows the adiabatic elimination of the mechanical mode,
also implies small values for the squeezing parameters
ma, mb, and mab.

The polariton operators Â, B̂ and their corresponding
noise operators Âin, B̂in are readily obtained via a Bo-
goliubov transformation of the bare modes in the absence
of dissipation. Assuming for simplicity κa = κb = κ, one
then finds readily [35]

∂tÂ = (iωA − κ)Â+
√
2κÂin, (7)

and similarly for mode B, with A → B.
Determining the conversion between the microwave

signal and the optical field requires in general to solve the
full Heisenberg-Langevin equations with time-dependent
coefficients. But if one assumes perfect adiabaticity one
can use instead a much simplified effective two-sided cav-
ity model. To single out the effect of the varying frequen-
cies ωA,B(t) we focus on the slowly varying envelopes

Ã = Âe−iωAt and B̃ = B̂e−iωBt. We also introduce a
new operator for the symmetric superposition of the cav-
ity modes, V̂ = (Ã+ B̃)/

√
2. From Eq. (7) we then have

∂tV̂ = −κV̂ +
√
κÃin +

√
κB̃in, (8)

reminiscent of the situation of a two-sided cavity [36] but
with input field operators depending on ∆a. Specifically
in the first stage of the detection sequence, t < t0, we
have Ãin ≈ â′ine

i∆′

a
t and B̃in ≈ b̂′ine

i∆′

b
t, while in the

third step, t > t0+ τ , Ãin and B̃in are simply exchanged.
In the intermediate second step, the adiabatic, essen-
tially dissipation-free, evolution results in small phase
shifts for the envelope operators, proportional to ∂tωA

and ∂tωB for Ã and B̃, respectively. In case of perfect
adiabaticity we may neglect these shifts and thus obtain
V̂ (t0) = V̂ (t0 + τ) [33].

Summarizing, the full evolution of V̂ for the three-
step detection sequence is approximately described by
the equation

∂tV̂ = −κV̂ +
√
κâ′ine

i∆′

a
t +

√
κb̂′ine

i∆′

b
t. (9)

With the boundary conditions of the two-sided cavity,
â′oute

i∆′

a
t + â′ine

i∆′

a
t =

√
κV̂ and b̂′oute

i∆′

b
t + b̂′ine

i∆′

b
t =√

κV̂ [36], this equation can be solved in the frequency
domain to give

â′out(ω −∆′
a) =

κb̂′in(ω −∆′
b)− iωâ′in(ω −∆′

a)

κ+ iω
. (10)

Perfect conversion, â′out(−∆′
a) = b̂′in(−∆′

b), occurs for
ω = 0. Remembering that the optical and the microwave
operators are expressed in rotating frames with respect
to the pumping frequencies ωap and ωbp, this corresponds
to the case where the frequency of the input microwave

fields is ωs = ωb − xcgb0 − 2G2
b/ωm and the frequency of

the output optical field is ωo = ωa − xcga0 − 2G2
a/ωm.

We introduce the mean photon numbers of the optical
and microwave modes

n̄o =

∫
dω|g(ω)|2〈â†out(ω −∆′

a)âout(ω −∆′
a)〉

n̄s =

∫
dω|g(ω)|2〈b̂†in(ω −∆′

b)b̂in(ω −∆′
b)〉, (11)

where the mode filter functions g(ω) are sharply peaked
around ω = 0. By assuming detection and reception time
windows (τd, τr) ≫ 1/κ [37, 38] we find

n̄o = n̄s +
(G2

b +G2
a)γ

ω2
mκ

(2n̄c + 1), (12)

where we have taken into account the modified noise cor-
relation of the optical and microwave cavities, and the
effects of the mechanical noise are merged into the sec-
ond term on the right side. This is the central result of
this paper.

Sensitivity. Ignoring technical noise and assuming that
the final optical detector is well characterized and has
near unit quantum efficiency, we concentrate on the in-
trinsic sensitivity of the three-step conversion sequence.
It is characterized primarily by the microwave to optical
conversion efficiency, the effects of quantum and thermal
noise, and the dead time required to reset the resonators
between measurements. Perfect adiabatic conversion re-
quires interaction times κ ≪ 1/τ ≪ 4|GaGb|/ωm ≪ ωm,
and the dead time to reset the resonators is of the order
1/κ. Quantum and thermal noise result in a dark-count
rate that also impacts the figure of merit of the detector,
see Eq. (12). A high-Q and ultracold mechanical oscilla-
tor can significantly suppress these sources of noise, but
in the limiting case γ/κ, n̄c → 0 intermode scattering as
well as memory effect, which we neglected in our analysis
[33], becomes a dominant source of noise.

As an example we consider an optomechanical res-
onator with high mechanical frequency ωm = 2π× 4GHz
and quality factor Q = 87 × 103, which results in γ =
2π × 46 KHz and n̄c = 72 for a temperature T = 14K
[39]. Because of the large detunings considered here, we
find however that the mechanical noise only adds a con-
tribution of 0.06 to n̄o. The level of thermal microwave
noise that feeds into n̄s can be managed by cooling the
microwave cavity to cryogenic temperatures. For a mi-
crowave cavity frequency ωb = 2π × 300 GHz and tem-
perature Tb = 300 K we have n̄s = 20, but for Tb = 3 K,
n̄s is reduced to 0.008. Finally we assume linear optome-
chanical coupling strengths Ga = −2π × 200 MHz and
Gb = 2π×300MHz, respectively, giving an effective inter-
action strength 2GaGb/ωm = −2π×30 MHz. We also set
the same decay rate for both cavities, κ = 2π× 850 kHz.
These parameters fulfill the condition for adiabaticity of
the conversion and result in a dead time of the order of
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100 ns. These estimates indicate that the detector should
be able to operate reliably at or below the single photon
level.

Conclusion. We have proposed and analyzed a time-
gated microwave detection scheme based on the con-
trol of polaritons in a hybrid optomechanical system.
In contrast to resonant schemes that focus on high fi-
delity quantum state transfer, [19–22], the dual optome-
chanical cavity detector is driven by a heterodyne-like
pumping and operates on the far-off sideband resonant
regime to minimize pump and mechanical noise, thereby
offering the potential to reliably detect very feeble mi-
crowave fields. Importantly that non-resonant approach
does not preserve the quantum state of the microwave
field. Rather, it detects the signal entering the microwave
resonator in a time determined by its decay time 1/κb just
before transfer to the optical domain.
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