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Radiation from a collapsing object is manifestly unitary

Anshul Saini, Dejan Stojkovic
HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500, USA

The process of gravitational collapse excites the fields propagating in the background geometry
and gives rise to thermal radiation. We demonstrate by explicit calculations that the density matrix
corresponding to such radiation actually describes a pure state. While Hawking’s leading order
density matrix contains only the diagonal terms, we calculate the off-diagonal correlation terms.

These correlations start very small, but then grow in time.

The cumulative effect is that the

correlations become comparable to the leading order terms and significantly modify the density
matrix. While the trace of the Hawking’s density matrix squared goes from unity to zero during the
evolution, the trace of the total density matrix squared remains unity at all times and all frequencies.
This implies that the process of radiation from a collapsing object is unitary.

Introduction. One of the most pressing problems in
modern physics is the information loss paradox in black
hole physics. Since Hawking radiation is purely thermal
[1], it is possible to convert a pure state into a mixed
state, which is forbidden in unitary quantum mechanics
[2]. Tt was often argued that subtle correlations between
the emitted Hawking quanta which are usually neglected
could be enough to recover information about the initial
state and convert an apparently maximally mixed ther-
mal state into a pure state [3, 4]. This point of view was
also often criticized by noticing that small corrections to
the leading order Hawking terms are not enough to re-
cover unitarity. The purpose of this paper is to perform
explicit calculations which may clarify this issue. We find
indeed that the process of gravitational collapse and sub-
sequent evaporation is manifestly unitary as seen by an
asymptotic observer.

We used the functional Schrodinger formalism which is
especially convenient for this question since it gives us the
time evolution of the system rather than radiation from
a pre-existing black hole [5-17]. We start with a mas-
sive shell which is collapsing under its own gravitational
pull. This process induces a non-trivial time-dependent
metric which then excites the field quanta. The pro-
cess of the gravitational collapse takes infinite time for
an outside observer, however, radiation is pretty close
to thermal when the collapsing shell approaches its own
Schwarzschild radius. Our formalism gives us an explicit
form of the wavefunction of the emitted radiation, which
contains complete information not only about the diag-
onal Hawking terms, but also about the non-diagonal
correlations terms. Correlations between the Hawking
quanta are at first indeed negligible with respect to the
diagonal terms. However, time evolution creates progres-
sively more off-diagonal terms than the diagonal ones.
Moreover, time evolution is such that these cross-terms
become of the same order of magnitude as the Hawk-
ing terms. As a result, the density matrix for the emit-
ted radiation is significantly modified, in particular it is
not purely diagonal. We calculate the time evolution of
the complete density matrix as a function of time and
frequency. The relevant quantity that we want to ob-
tain is the trace of the density matrix squared (T'r(p?)),

which tells us whether the system is in a pure or mixed
state. We find that if we take only diagonal terms in den-
sity matrix then Tr(ﬁh2) goes from unity to zero, which
means that the state goes from pure to mixed. This is
the standard Hawking’s result which implies information
loss. However if we include the off-diagonal terms then
Tr(p?) remains unity at all frequencies and all times dur-
ing the evolution. This means that the initial state stays
pure during the evolution. This is the main result of our
analysis.

The formalism.  We consider a thin shell of mat-
ter which collapses under its own gravity. We use
Schwarzschild coordinates because we are interested in
the point of view of an observer at infinity. The metric
outside the shell can be written as

R, R\ '
ds* = — (1 - —) dt? + (1 - —) dr? +r7dQ* (1)
r r
The interior of the domain wall is a flat spacetime due to
the Birkhoff theorem
ds® = —dT? + dr® 4 r2dQ2. (2)

The time coordinates of the two regions are related with
the proper time inside the shell as
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where B=1— R;/R and R, = fl—f. From here we get
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An action of the massless scalar field propagating in the
background of the collapsing shell can be written as

5= / d4x\/——g%gﬂ"amay¢ (5)

where ¢ is a scalar field, which we can expand in terms
of the modes as

¢ = _ar(t)fa(r). (6)
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In the interior of shell, the action takes the form
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Similarly, outside of the shell it becomes
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The classical equation of motion for this collapsing shell
near the horizon can be written as [5]

i n(a@)?] (7)

BR*
- 12 (9)

where h is a constant. Using Eq. (4) and Eq. (9), we get
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When the shell is approaching its own Schwarzschild ra-
dius, R — R, then T} — 0, hence the total action be-

comes
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which in terms of the modes gives
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Matrices A and B are independent of R(t). From the
action (12) , we can find the corresponding Hamiltonian
and write down the Schrodinger equation Hv = i0vy /0t
as
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where the momentum is defined as
0
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Since matrices A and B are symmetric and real, both can
be diagonalized simultaneously with respective eigenval-
ues o and . One can then write the Schrodinger equa-
tion in terms of eigenmodes y (which are linear combina-
tions of the original modes a) as
RN\ 1 0> 1_, 0Y(y,t)
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Defining
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one can rewrite Eq.(17) in form similar to the harmonic
oscillator equation as
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The exact solution to this equation is
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where 6 is the solution of the differential equation

1
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with initial conditions
1
6(0) = —,6,(0) = 0. (23)

Since the background spacetime is time dependent, we
make a distinction between the initial frequency wg at
which the mode is created from the vacuum, and the
final frequency at some later time ¢ defined as

@ = woel/? s, (24)

The wave function 1 (y, t) contains information about the
modes/particles excited in the spacetime in terms of their
frequencies at the final moment t. We want to construct
density matrix of the system so we need to expand the
wavefunction in terms of a complete basis. We will use
the simple harmonic oscillator (SHM) basis (,(y).

1/)(%0 = ch(t)CH(y) (25)
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The number of states in this basis is infinite so the size
of the density matrix will be infinite too. However one
can see that the probability of exciting higher n states
decreases rapidly as n increases. Therefore one can eas-
ily identify trends even by considering finite (but large
enough) n. The coefficients ¢, (t) can be written as

enlt) = / dyCn® (4) (. ). (26)

The probability of finding a particle in a particular state
n is given by | ¢,(t) |* . The coefficients ¢, can be ex-
plicitly found as (see supplemental material)
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where P is given by
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In order to find ¢,, we need to solve for §. The simplest
analytic method is given in [20]. § and 6, can be found
in terms of  and £ as

1 A/ £2 2

0y (€& + xxn)- (30)

1

wop
7 and £ and their derivatives can be written in terms of
Bessel’s function as
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Xn = —7wp[Y1(2wo)Jo(u) — J1(2wo) Yo (u)] (34)
where u = 2wgy/T — 7.

The occupation number at eigenfrequency @ is given
by the expectation value

N(t.@) = nle|” (35)

n

The process of the gravitational collapse takes infinite
time for an outside observer, however, radiation is pretty
close to Planckian when the collapsing shell approaches
its own Schwarzschild radius (see appendix). Since we
are already working in a near-horizon approximation, if
we plot N(t,) for some fixed late ¢, the spectrum will
resemble the thermal Hawking distribution [5]. However,
we are here interested in correlations between the emitted
quanta, which is contained not in the diagonal spectrum,
but actually in the total density matrix for the system.

Density Matriz. Knowing the expansion coefficients
cn, explicitly, we can construct the density matrix. The
density matrix is defined as

p=>_ [l (36)

In our basis it can be re written as

p= Zcmn |<m> <<n| (37)
where ¢ = ¢mepn. Original Hawking radiation den-

sity matrix, pp, contains only the diagonal elements ¢y,
while the cross-terms ¢,,, for m # n are absent. The
off-diagonal terms represent interactions and correlations

between the states. The rationale behind neglecting the
cross-terms is that these correlations are usually higher
order effects and will not affect the Hawking’s result in
the first order. However, as argued recently in [18] (see
also [19]), during the process of Hawking radiation, the
correlations may start off very small, but gradually grow
as the process continues. It may happen at the end that
these off-diagonal terms can modify the Hawking density
matrix significantly enough to yield a pure sate. The
time-dependent functional Schrodinger formalism is es-
pecially convenient to test this proposal since it gives
us the time evolution of the system. In Fig. 1, we plot
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FIG. 1: Elements of the density matrix ¢m. and Tr(p) as a
function of time at w = 15, where an index n labeling the
modes goes up to n = 101. As time increases, the magnitude
of coo decreases, Tr(p) remains unity, and all other cmy, in-
crease, reach the maximum values then decrease again. This
implies that small correlations between the modes become as
important as the diagonal terms.

some terms (both diagonal and off-diagonal) in the den-
sity matrix. We plot their time evolution with the fixed
frequency w. We took absolute values of the off-diagonal
Cmn because they can be imaginary. All the units are
dimensionless. Dimensionless frequency is given as WRg
, while dimensionless time is given as t/Rg. From the
plot one can see that the coefficient cqq is initially almost
exactly one, but then it decreases with time. The higher
terms start small but then they increase with time, reach
their maximum value and then they decrease. This is
expected because the system starts in the ground state.
As time progress more modes are excited and higher or-
der terms increase in magnitude. This increase of higher
order terms can not proceed indefinitely if unitarity is
preserved, i.e. any increase must be payed by a decrease
somewhere else. On the same plot, we show the trace
of the density matrix Tr(p)as a check. The trace must
remain unity at all times to preserve probabilities. How-
ever, we can numerically take into account only a finite
number of modes. Therefore, at some late time, the trace
will start decreasing on the graph since higher modes
which have not been included in numerics will become
important. The more modes we include, the longer the



trace will remain unity. In the supplemental material we
proved that if one takes n — oo, then Tr(p) always re-
mains unity. Hence we plotted the graph only up to the
time when T'r(p) remains one.

What is more important is that the magnitudes of
the off-diagonal terms also increase with time. This im-
plies that correlations among the created particles in-
crease with time up to the point when even higher or-
ders terms start increasing. Since there are progressively
more cross-terms than the diagonal terms, their cumula-
tive contribution to the total density matrix simply can
not be neglected. In Fig. 2, we plotted ¢;,,, and Tr(p) as
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FIG. 2: Cross-terms cnm and Tr(p) as a function of @ at fixed
time ¢t = 5. As @ increases all ¢,,,, decrease, but coo increases.

a function of @ at a constant time. Tr(p) remains one
for all frequencies. The lowest term cgg increases with
w, but all other terms decrease. This means that the
lowest diagonal term dominates and correlations are not
that important at high frequencies. Information content
in the system is usually given in terms of a trace of the
squared density matrix. If the trace of the squared den-
sity matrix is one, then the state is pure, while the zero
trace corresponds to a mixed state. In Fig. 3, we plot
the traces of squares of two density matrices as functions
of time for a fixed frequency. One is the Hawking den-
sity matrix pp which contains only the diagonal terms
cnn and neglects correlations. The other one is the to-
tal density matrix p defined in Eq. (37) which contains
all the elements, including the off-diagonal correlations.
As expected, Tr(p?) goes to zero as time progress which
means that the system is going from a pure state to a
maximally mixed thermal state. This is often labeled as
the information loss in the process of Hawking radiation.
However, if the plot the total T(p?) we see that it always
remains unity, which means that the state always remain
pure during the evolution and information does not get
lost. This clearly tells us that correlations between the
excited modes are very important, and if one takes them
into account the information in the system remains in-
tact. In Fig. 4, we plot Tr(p?) and Tr(p3) as a function
of @ at a fixed time. As expected, Tr(p?) remains one at
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FIG. 3: pn is the diagonal Hawking density matrix, p is the
total density matrix as in Eq. (37). We plot Tr(p*) and
Tr(p7) as functions of time at a fixed frequency @ = 50.
The magnitude of Tr(p;) decreases with time which means
that the system is losing information by going from a pure
to a mixed state. However Tr(5?) remains unity at all times,
which means that the state remains pure. This implies that
the information of the system is conserved if cross-correlations
are accounted for.
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FIG. 4: Tr(p?) and Tr(p3) as a function of @ at t = 5. Again
Tr(p?) remains one at all frequencies but Tr(p7) differs from
unity at low frequencies which means it does not account for
the full information of the system at low frequencies.

all frequencies, but T'r(p7) differs from unity at low fre-
quencies. This implies that p; gives a good description
of the system at high frequencies, but it fails to do so at
low frequencies.

Conclusions. In conclusions, we showed by explicit
calculations that radiation coming from a collapsing ob-
ject is manifestly unitary. Hawking’s thermal density ma-
trix is diagonal and inevitably leads to information loss.
However, when we take the off-diagonal correlation terms
into account, the density matrix describes a pure state at
all times. This result agrees well with [21], where it was
shown at that at late enough time all the information in
the system is contained in correlations between the small



subsystems (in this case emitted particles). Our analysis
was done for a static outside observer, however, it will
be very important to learn what an infalling observer
would see during the collapse in order to settle down the
question of information loss.
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