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We show that the stochastic field theory for directed percolation in presence of an additional
conservation law (the C-DP class) can be mapped exactly to the continuum theory for the depinning
of an elastic interface in short-range correlated quenched disorder. Along one line of parameters
commonly studied, this mapping leads to the simplest overdamped dynamics. Away from this line,
an additional memory term arises in the interface dynamics; we argue that it does not change the
universality class. Since C-DP is believed to describe the Manna class of self-organized criticality,
this shows that Manna stochastic sandpiles and disordered elastic interfaces (i.e. the quenched
Edwards-Wilkinson model) share the same universal large-scale behavior.

Self-organized criticality (SOC) and scale-free
avalanches arise in a variety of models: deterministic
and stochastic sandpiles [1–6], propagation of epidemics
[7], and elastic interfaces driven in random media [8–14].
In the last decade several authors found evidence that
most of these models belong to a small number of
common universality classes. A unifying framework was
proposed based on the theory of absorbing phase transi-

tions (APT) [15, 16]. These are non-equilibrium phase
transitions between an active state and one –or many–
absorbing states. The generic universality class is the
directed-percolation class (DP) [19, 20]. The spreading
exponents of the critical DP clusters are interpreted as
avalanche exponents in the corresponding SOC system
[16]. In presence of additional conservation laws, other
classes may arise, e.g. the conserved directed percolation

class (C-DP), with an infinite number of absorbing
states. It is now often stated, though unproven, that the
continuum fluctuation theory for C-DP is the effective
field theory for Manna sandpiles [17].

Stochastic sandpiles are cellular automata where the
toppling rule contains randomness, renewed at each top-
pling. A notable example is the Manna model [2, 4, 21]:
Randomly throw grains on a lattice. If the height at one

point is ≥ 2, then move two grains from this site to ran-

domly chosen neighboring sites. Careful numerical stud-
ies [2, 22–25], showed that the Manna and the deter-
ministic Bak-Tang-Wiesenfeld (BTW) models belong to
different universality classes (see [5, 22, 26] for reviews).
It was proposed in [27, 28] that the coarse-grained evo-
lution equations for the Manna class identify with the
stochastic continuum equations for the C-DP class:

∂tρ(x, t)=aρ(x, t)− bρ(x, t)2 +Dρ∇
2ρ(x, t)

+ση(x, t)
√

ρ(x, t) + γρ(x, t)φ(x, t) , (1)

∂tφ(x, t)=(Dφ∇
2 −m2)ρ(x, t) . (2)

Here ρ is the local activity, and φ the local den-
sity of grains. The parameters b,Dρ, Dφ are posi-
tive; η(x, t) is a (centered) spacio-temporal white noise,
〈η(x, t)η(x′, t′)〉 = δd(x−x′)δ(t− t′) . Clearly, ρ(x, t) = 0

with arbitrary “background” field φ(x, t) forms an infi-
nite set of (time-independent) absorbing states. The field
φ(x, t) encodes the likeliness of absorbing configurations
to propagate activity when perturbed. From (2) φ is a
conserved field for m = 0, reflecting conservation of the
total number of grains. In [29, 30] it is claimed that all
“stochastic models with an infinite number of absorbing
states, in which the order-parameter evolution is coupled
to a nondiffusive conserved field, define a unique univer-
sality class”, the C-DP, as further supported in [31, 32].
The C-DP class is believed to contain conserved lattice-
gas models, conserved threshold-transfer processes, and
others [16, 30, 33]. On the other hand, there were early
conjectures that sandpile models and disordered elastic
manifolds belong to the same universality classes: The
first claim relates the BTW model and elastic interfaces
driven in a periodic disorder [9], reexamined recently [34].
It was followed by a conjecture [35] on the equivalence of
the Oslo model [3] to an elastic string driven by its end-
point in a non-periodic quenched random field; the latter
emerging from the stochastic noise in the Oslo model. Fi-
nally, it was conjectured that Manna sandpiles are equiv-
alent to interfaces in random media [23, 36].

Quite naturally, it was then proposed that C-DP and
the depinning of an interface belong to the same univer-
sality class [23, 28, 31, 37, 38]. Until now this remark-
able claim is mainly based on the numerical coincidence
of critical exponents in simulations of discrete models,
believed to belong to the respective universality classes
[17, 23]. This coincidence of exponents and the conver-
gence of these simulations was contested in [18] where it
was proposed that Manna sandpiles are instead equiva-
lent to DP. It is thus crucial to find a direct connection
at the level of the continuum theories. The field the-
ory of interfaces subject to disorder is well known, both
for depinning [39–41] and avalanches [12, 13, 42]. It is
described by functional RG (FRG), involving an infinite
number (a function) of relevant couplings near its upper
critical dimension dc = 4 [43]. One would like to relate it
to the C-DP field theory. Although it was realized that its
renormalization is more complex than that of standard
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DP which requires only a few couplings, the attempts
to handle it were unsuccessful [33, 44]. Intriguingly, the
full renormalized disorder correlator was measured nu-
merically [45], and found indistinguishable from that of
random interfaces obtained in [46].
The aim of this Letter is to provide an exact map-

ping in the continuum, between the C-DP class defined
by Eqs. (1) and (2), and an interface driven in quenched
disorder, with a specific, exponentially decaying, micro-
scopic disorder correlator. Along a line in parameter
space it maps C-DP to the simplest overdamped dy-
namics of the interface, thereby proving the long-sought
equivalence of the two systems. Away from this line, the
dynamics of the interface contains an additional memory
kernel. As we show, it nevertheless falls into the same
universality class as the simplest overdamped model, i.e.
quenched Edward-Wilkinson (QEW).
Let us consider the two coupled equations of motion (1)

and (2). For convenience we added a parameterm2, since
it appears in the interface model as an infrared regulator.
Although we are interested in the limit m → 0, it is useful
to define the theory with m > 0, since this insures that
the activity ρ(x, t) will stop, even without grains leaving
the system, which therefore can be taken infinitely large.
To simplify the identification, note that by rescaling of
space we can set Dρ → 1. By rescaling φ, we can then
set Dφ → 1. Finally rescaling both ρ and φ, we can set
σ → 1. This simplifies the model to

∂tρ(x, t)=aρ(x, t)− bρ(x, t)2 +∇2ρ(x, t)

+η(x, t)
√

ρ(x, t) + γρ(x, t)φ(x, t) (3)

∂tφ(x, t)=(∇2 −m2)ρ(x, t) . (4)

The activity variable ρ(x, t) ≥ 0 for all times [47]. Note
that γ = 0, b > 0, corresponds to directed percolation:
In the absence of noise, i.e. in mean field, it exhibits a
transition between ρ > 0 for a > 0 and ρ = 0 for a ≤ 0.
This transition exists in any d. The noise η(x, t) becomes
relevant for d ≤ dc = 4, a property shared by DP and
C-DP; the latter has γ > 0 which we now examine.
As we will see below, γ = b is special. We therefore set

b := γ + κ. We define new variables, a force F(x, t) and
a velocity u̇(x, t) (denoting ∂t or a dot time derivatives):

F(x, t):=ρ(x, t)− φ(x, t) −
a+m2

γ
, (5)

ρ(x, t):=u̇(x, t) . (6)

The total number of topplings at position x since t = 0
is u(x, t) − u(x, t = 0) =

∫ t

0
dt′ρ(x, t). The identification

of u as a height for the associated elastic interface is
standard [45], while the identification of F as a force is
new. Clearly, the initial value of the field u(x, t = 0)
does not carry any information for C-DP, while it does
for the interface [48]. For notational simplicity we set
u(x, t = 0) = 0. All our results can be extended to the

general case by replacing u(x, t) → u(x, t) − u(x, t = 0).
The equations of motion for F(x, t) and u̇(x, t) then are

∂tF(x, t)=−γF(x, t)u̇(x, t) − κu̇(x, t)2

+η(x, t)
√

u̇(x, t) , (7)

∂tu̇(x, t)=[∇2 −m2]u̇(x, t) + ∂tF(x, t) . (8)

The problem is defined with initial data u̇(x, t = 0) and
F(x, t = 0). The second equation (8) can be integrated
into

∂tu(x, t)= [∇2 −m2]u(x, t) + F(x, t) + f(x) , (9)

f(x):=u̇(x, 0)−F(x, 0) = φ(x, 0) +
a+m2

γ
. (10)

Eq. (9) describes the motion of an elastic interface subject
to a known time-independent external force f(x), and a
space-time dependent force F(x, t). Because of the term
m2, the interface also sees a quadratic well. Integration
of Eq. (4) shows that the change in the background field,
φ(x, t)−φ(x, 0), can be interpreted as the sum of the elas-
tic force plus the force from the quadratic well, acting on
the interface. Eq. (7) determines F(x, t) as a stochas-

tic functional of the field u(x, t), depending on the noise.
It is formally written as F(x, t) ≡ F [u, η](x, t). Once
F(x, t) is known, substituting it into Eq. (9) yields an
elastic manifold in a random medium. As we show now,
F(x, t) can be written explicitly. Eq. (7) is linear in F
with two source terms, hence its solution is

F(x, t) = e−γu(x,t)F(x, t = 0) + Fdis(x, t) + Fret(x, t) .
(11)

The first term depends on the initial condition, and de-
cays to zero if the interface moves by more than 1/γ;
it can be ignored in the steady state. The second term
can be interpreted as a quenched random pinning force.
It arises from the noise in Eq. (7), is independent of κ,
and is the only term when κ = 0 (then Fret = 0) i.e.
for γ = b. It can be written as Fdis(x, t) = F

(

u(x, t), x
)

,
where for each x, F (u, x) is an Orstein-Uhlenbeck process
[49], solution of the stochastic equation

∂uF (u, x) = −γF (u, x) + η̃(x, u) , (12)

with initial data F (0, x) = 0, and η̃(x, u) a white noise,
uncorrelated in x and u. A pedestrian way to derive
Eq. (12) is to write the white noise η(x, t) = dBx(t)/dt
in Eq. (7) in terms of independent one-sided Brownians
Bx(t) indexed by x, with Bx(0) = 0, and integrate the
linear equation as

Fdis(x, t) =

∫ t

0

dt′
dBx(t

′)

dt′
√

u̇(x, t′)e−γ[u(x,t)−u(x,t′)]

= e−γu(x,t)

∫ u(x,t)

0

eγudB̃x(u) = F
(

u(x, t), x
)

. (13)

The force F (u, x) is the solution of the Orstein-Uhlenbeck
process (12) in terms of the white noises η̃(x, u) =
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dB̃x(u)/dx. It can be written as a (time-changed)

Brownian, F (u, x) = e−γu

√
2γ

B̃x

(

e2γu − 1
)

. The sec-

ond line in (13) is obtained noting that under a time
change du = u̇(x, t)dt each Brownian Bx(t) is changed
into another Brownian B̃x(u) with B̃x(0) = 0, as
√

u̇(x, t′)dBx(t
′) = dB̃x

(

u(x, t′)
)

. One then uses the

identity
∫ v

0 f(u)dBx(u) = B̃x(
∫ v

0 f(u)2du) for test func-
tions f(u), from the scale invariance of Brownian motion.
Hence, neglecting the first (decaying) term in Eq. (11),

we showed that for γ = b C-DP maps onto

∂tu(x, t) = [∇2−m2]u(x, t)+F (u(x, t), x)+ f(x) . (14)

This is an interface driven in a quenched random
force field F (u, x), which is Gaussian, specified by its
correlator, calculated from the formulae above, using
Bx(u)Bx′(u′) = δ(x − x′)min(u, u′). The Orstein-
Uhlenbeck process becomes stationary when the interface
has been driven on distances larger than 1/γ:

F (u, x)F (u′, x′)=δd(x− x′)
e−γ|u−u′| − e−γ(u+u′)

2γ

→γu,γu′≫1δ
d(x− x′)∆0(u− u′) (15)

with F (u, x) = 0. The bare disorder correlator of the
random pinning force thus is

∆0(u) =
e−γ|u|

2γ
. (16)

It is short-ranged, and as a peculiarity has a linear cusp.
Usually one considers smooth microscopic disorder, i.e.
an analytic ∆0(u), which under RG (i.e. coarse grain-
ing) develops a cusp linked to the existence of many
metastable states and avalanches beyond the Larkin scale
Lc ∼ 1/mc [50]. A cusp in the microscopic disorder
means that there are avalanches of arbitrarily small sizes.
On the other hand, any short-ranged force-force corre-
lator flows at large scale, under coarse-graining, to the
same renormalized disorder correlator, the universal de-
pinning fixed point [50]. Its upper critical dimension is
dc = 4, implying that C-DP has dc = 4. The fixed-point
function has been calculated analytically in an ε = dc−d
expansion [41] and measured numerically [46]. It deter-
mines the two independent exponents of the depinning
transition, the roughness exponent ζ of the field u ∼ Lζ,
ζ > 0 for d < dc, and the dynamic exponent z, t ∼ Lz,
z < 2 for d < dc, and their ε-expansions [41].
Let us now discuss the correspondence between the

active-absorbing phase transitions for C-DP and depin-
ning. For simplicity consider a spatially uniform ini-
tial condition φ(x, t = 0) = φ, s.t. the initial driv-
ing force acting on the interface in Eq. (10) is uniform,
f(x) = f . We now set the control parameter m → 0 so
that there is a globally active phase corresponding to an
interface moving at constant steady-state mean velocity

u̇(x, t) = v ∼ (f − fc)
β > 0, if f > fc. Here fc is the de-

pinning threshold force, in principle calculable once the
correlator ∆0 is known. Translating to C-DP it implies
an active phase with ρ > 0, when a + γφ > γfc, and a
phase transition where ρ vanishes with the same expo-
nent β as a function of the distance to criticality. Due to
a symmetry of the interface problem, β = ν(z−ζ) = z−ζ

2−ζ
.

This gives ρ = u̇ ∼ t−θ at criticality with θ = 1− ζ
z
, e.g.

as response to a (large) specially uniform perturbation at
t = 0+, in the limit of v → 0+. In the language of APT
[16] this is a steady-state exponent.
Let us now consider the protocol for avalanches in the

absorbing phase, near criticality. In the sandpile model
(e.g. in numerical simulations for Manna) one usually
starts from an initial condition with non-vanishing activ-
ity ρ(x, 0) = u̇(x, 0) ≥ 0, either adding a single grain, or
adding grains in an extended region. This generates an
avalanche which stops when ρ(x, t) = 0 for all x. For the
elastic manifold it is equivalent to having the interface
at rest up to time t = 0, and then to increase the force
by u̇(x, 0). This is repeated until one reaches the steady
state. It is known for interfaces that under this procedure
the system reaches the Middleton attractor, a sequence
of well-characterized metastable states between succes-
sive avalanches [54]. Avalanches with this statistics have
well-defined exponents [13, 55, 56].
To summarize, along the line γ = b, we presented

an exact mapping in any dimension, between the C-DP
Eqs. (1)-(2) and a driven interface with overdamped dy-
namics, subject to a quenched random force F (u(x, t), x)
with correlations (16), in a parabolic well. This con-
firms the beautiful numerical observation of Ref. [45] that
Manna sandpiles, the Oslo model, C-DP and disordered
elastic manifolds have the same renormalized effective
disorder correlator. If one accepts that the Manna class
coincides with C-DP, it establishes the long sought map-
ping to disordered elastic interfaces [57]. Our exact map-
ping extends beyond the stationary state and allows to
study the evolution from any initial state.
Some remarks are in order: The interface equation

(14) with the choice of correlator (15) possesses a spe-
cial Markovian property, which it inherits from the force
evolution equation (7) (for κ = 0), and which allows it
to be solved without storing the full random-force land-
scape. The latter is constructed as the avalanche pro-
ceeds, hence is determined only for u ≤ u(x, t). This
property was noted in [56, 58] and can be used for effi-
cient numerics [56, 59].
The limit γ → 0 is also of interest. If one keeps κ = 0,

i.e. b → 0, one sees from (10) and (11) that in that limit

u̇(x, t)−u̇(x, t = 0) = [∇2−m2]u(x, t)+B̃x

(

u(x, t)
)

(17)

This is the Brownian force model (BFM): It provides the
mean-field theory for avalanches of an interface [13, 60,
61], hence also for C-DP, in d ≥ 4. If we keep b > 0, the
limit γ → 0 is towards DP.



4

Let us finally discuss C-DP for κ 6= 0, i.e. away from
the line γ = b in Eq. (3). If the new source term κu̇2,
which appears in Eq. (7) for ∂tF , were directly inserted
into Eq. (8) for u̇, the mapping to the interface would
fail, as such a term is relevant [62]. Fortunately, it is
screened by the disorder, and is only marginal. To show
this, consider the additional contribution to Eq. (11),

Fret(x, t) = −κ

∫ t

0

dt′ u̇(x, t′)2 e−γ[u(x,t)−u(x,t′)] . (18)

Integrating by part, and inserting into Eq. (9) we obtain

b

γ
∂tu(x, t)=[∇2 −m2]u(x, t) + F (u(x, t), x) + f(x)

+
κ

γ

∫ t

0

dt′ü(x, t′)e−γ[u(x,t)−u(x,t′)]

+

[

b

γ
u̇(x, 0)− f(x)

]

e−γu(x,t) . (19)

Note that the boundary term in the integration by part
has changed the friction coefficient by κ/γ. This equa-
tion of motion is equivalent to the C-DP Eqs. (1)-(2) for
ρ(x, t) = u̇(x, t) with initial data u̇(x, 0), φ(x, 0). It is
a salient result of our letter. Note that it results from
a simple change of variables, which maps a system with
annealed noise, the C-DP, to a system with quenched

noise, the interface; as such it bears some analogy to
the Cole-Hopf transformation used to solve the Kardar-
Parisi-Zhang (KPZ) equation.
The first line in Eq. (19) describes the standard over-

damped equation of motion of the interface, with the
same random force F (u, x) as before, but a new friction
coefficient b/γ. The third line depends on the initial con-
dition. It rapidly decays to zero, and can be neglected in
the stationary regime. The second line is a new memory
term. We argue that it is marginally irrelevant: Con-
sider the large-γ limit, and replace e−γz → 1

γ
δ(z), hence

e−γ[u(x,t)−u(x,t′)] → 1
γu̇(x,t)δ(t − t′). The second line of

(19) then becomes κ
γ2 ∂t ln u̇(x, t) + O(γ−3) where each

new power in the 1/γ expansion comes with a power of
1/u ∼ L−ζ and is more and more irrelevant [64]. Hence
we conclude that the universality class of C-DP and of
QEW should be the same, even for b 6= γ.
The present work calls for further studies: First,

Eq. (19) can be analyzed using FRG to confirm our
conclusions and explore this unusual interface dynamics.
Our work opens the way to study, within a common RG
framework, a variety of models ranging from interfaces to
absorbing phase transitions. It can be extended to long-
range elasticity (long-range toppling), or to a variety of
perturbations. The simplest one is to add m2ẇ(x, t) to
each of the Eqs. (1)-(2) in order to reproduce the stan-
dard driving for the interface [12]. Another extension is
the crossover to DP as both γ and b are small.
Second, Eq. (19) permits to study initial conditions,

hence to disentangle transients from properties of the

Middleton attractor. That allows to treat avalanches
with localized seeds in the context of APTs, used to de-
fine spreading exponents. E.g. the survival probability
in C-DP, P surv

C-DP(t) ∼ t−δ is related to the avalanche-
duration distribution at depinning, Pdep(T ) ∼ T−α, via
δ = α − 1 = (d − 2 + ζ)/z. We checked that indeed
δ = 0.17 and 0.48 in d = 1 and 2, both for depinning, see
table 2 of [55], and Manna sandpiles [17, 63].

Third, since our mapping is local in space, it can be
extended to finite-size systems at m = 0. Imposing
ρ(x, t) = φ(x, t) = 0 at the boundary corresponds to the
common choice to let grains “fall off”. Here it implies
u(x, t) = Ḟ(x, t) = 0 at the boundary.

Finally one should understand the cusp of Ref. [45] in a
more general setting. Challenging questions are whether
the quenched KPZ class and the DP with quenched dis-
order [16] can be treated similarly.

In conclusion, we provide an exact mapping from the
field theory of a reaction-diffusion system with a conser-
vation law, the C-DP system of Eqs. (1)-(2), to a contin-
uum model of an interface driven in a random landscape.
Using universality we show that the C-DP class and, if
we accept its equivalence to the Manna class, also Manna
stochastic sandpiles, as well as the quenched Edwards-
Wilkinson model belong to a single, and hence very

large universality class which spans self-organized crit-
icality, avalanches in disordered systems, and reaction-
diffusion models. This points towards a unified field the-
ory for these systems using functional RG. It also defines
a framework for probabilists to put this claim on rigorous

grounds, as was recently done for the KPZ class [65, 66].
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