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We measure the density profiles for a Fermi gas of 6Li containing N1 spin-up atoms and N2

spin-down atoms, confined in a quasi-two-dimensional geometry. The spatial profiles are measured
as a function of spin-imbalance N2/N1 and interaction strength, which is controlled by means of a
collisional (Feshbach) resonance. The measured cloud radii and central densities are in disagreement
with mean-field Bardeen-Cooper-Schrieffer (BCS) theory for a true two-dimensional system. We find
that the data for normal-fluid mixtures are reasonably well fit by a simple two-dimensional polaron
model of the free energy. Not predicted by the model is a phase transition to a spin-balanced
central core, which is observed above a critical value of N2/N1. Our observations provide important
benchmarks for predictions of the phase structure of quasi-two-dimensional Fermi gases.

PACS numbers: 03.75.Ss

Layered strongly correlated systems play important
roles in the quest for high temperature superconduc-
tors. In high-transition temperature copper oxide and
organic compounds, electrons are confined in a quasi-two-
dimensional geometry, creating complex, strongly inter-
acting many-body systems, for which the phase diagrams
are not well understood [1]. The basic underlying mech-
anism for superconductivity, pairing of fermions, can be
disrupted by an unequal number of pairing species when
the Fermi surfaces of the two spin components are mis-
matched, leading to exotic superconductivity in which
pairs acquire finite momentum [2]. Such spin-imbalanced
Fermi mixtures also can contain polarons, quasiparticles
formed by mobile impurities in a fermionic bath. Ul-
tracold atomic Fermi gases provide a new platform for
emulation of these systems, with precise experimental
control [3–8].
Previous studies of pairing in spin-imbalanced three-

dimensional (3D) [9–11] and one-dimensional (1D) [12]
Fermi gases revealed phase separation. In 3D, a spin-
balanced, fully-paired, superfluid core is surrounded by
an imbalanced normal fluid shell, followed by a fully po-
larized shell, a structure successfully described by an el-
egant polaron model [13]. For measurements in 1D im-
balanced mixtures, the behavior is reversed: A balanced
phase appears outside a spin-imbalanced core, in agree-
ment with a mean field model.
A natural question is how the phase diagram of a quasi-

two-dimensional cloud, containing a spin-imbalanced
Fermi gas, differs from those measured in one and
three dimensions. Does phase-separation occur? If
so, what separates? Unlike a 3D gas in free space,
a two-dimensional (2D) gas naturally contains bound
dimers [14, 15]. The binding energy of these dimers,
Eb ≥ 0, sets the natural scale of length for scat-
tering interactions in 2D systems. 2D-Polarons [16]
may be important for a quasi-2D Fermi gas [17]. The
phase diagram for imbalanced mixtures in this regime
is therefore likely to be very rich [18–20], involving

FIG. 1. Top: Side image of layered pancake-shaped atom
clouds, separated by 5.3 µm in a CO2 laser standing-wave
trap. Bottom: In each pancake, confinement causes majority
spins (blue-up arrow) and minority spins (red-down arrow) to
pair, producing bound dimers. Polarons form when minority
atoms scatter in the Fermi sea of the majority atoms and
become surrounded by a cloud of particle-hole pairs (dark-
blue-light-blue). Tightly bound dimers also scatter, forming
dressed dimers.

the interplay and phase separation of several compo-
nents, including dimer gases, polaron gases and spin-
imbalanced normal fluids, as shown in Fig. 1. Ex-
otic components with spatially modulated superfluids
(Fulde-Ferrell-Larkin-Ovchinnikov states), and vortex-
anti-vortex pairs (Berezinskii-Kosterlitz-Thouless states)
also have been predicted for 2D and quasi-2D Fermi
gases [19, 21–27]. The dimensionality of a single layer in
Fig. 1 is determined by the ratio of the transverse Fermi
energy EF to the energy level spacing hνz in the tightly
confined z-direction. The system is two-dimensional if
EF /hνz << 1 or three dimensional if EF /hνz >> 1.

We report measurements of the spatial profiles for de-
generate spin-imbalanced mixtures in the intermediate
quasi-two-dimensional regime [17], where EF /(hνz) ≃ 1.
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FIG. 2. Measured column density profiles in units of N1/RTF1 at 832 G, for EF /Eb = 6.6 (left panel) and at 775 G, for
EF/Eb = 0.75 (right panel) versus N2/N1. Green: 1-Majority; Red: 2-Minority. Blue-dashed: Column density difference.
Each profile is labeled by its N2/N1 range. For the density difference, the flat centre and two peaks at the edges are consistent
with a fully paired core of the corresponding 2D density profiles. These features are more prominent for the higher interaction
strength (right panel).

This regime is of great interest, as the onset of a su-
perfluid phase is predicted [20, 28] to occur at a higher
critical temperature than for a true 2D system. Control
of the relative spin-population permits precision studies
of the phase diagram for these quasi-2D-gases, which has
been the topic of intense theoretical study [14, 19–27, 29].
In the experiments, typical parameters [30] are: N1 =

800 atoms per pancake trap at a temperature T/TF <
0.21; Trap potential depth U0 = 3.3µK; Harmonic oscil-
lation frequencies ω⊥ = 2π × 440 Hz and ωz = 2π × 9.0
kHz (hνz = 0.43µK); EF1 = 0.85µK; Thomas-Fermi ra-
dius RTF1 = 17.5µm; At 775 G, Eb = 1.15µK.
We investigate 2D density distributions n2D(x, y)

of imbalanced quasi-2D gases by direct imaging,
which measures the column density profiles n1D(x) =∫
dy n2D(x, y), Fig. 2, as a function ofEF /Eb andN2/N1.

Here N1(N2) is the number of majority(minority) atoms.
The cut-off radii R and the central 2D densities for
each state are extracted using the fit function n1D(x) =
n1D(0) (1 − x2/R2)3/2, i.e., the y-integrated spatial pro-
file of an ideal 2D Fermi gas [30]. Fig. 3 shows the cloud
radii for the majority (blue dots) and minority (red dots),
for EF /Eb = 6.6, 2.2, and 0.75. Both radii are given in
units of the Thomas-Fermi radius RTF1 for the majority,
to clearly demonstrate the deviation from the predictions
for an ideal Fermi gas, which is shown for comparison as
the blue-dashed and red-dashed curves. For the nearly
polarized clouds, where N2/N1 = 0.1, the measured ma-
jority radii approach the ideal gas limit. As the N2/N1

is increased, the measured radii of both species are sig-
nificantly affected by attractive interactions between the
two spin components.
To consider many-body interactions, we first com-

pare the measured cloud radii for the balanced mixture,
N2/N1 = 1, with BCS theory predictions for a true 2D
Fermi gas [14], which shows ǫF = µ + Eb/2. This yields
profiles identical to those of an ideal gas [30, 39], leading
to R/RTF1 = 1 for both spin states (black circle Fig. 3),
in disagreement with the measured radii, which are much
smaller.
Now we compare the data in Fig. 3 to a 2D polaron

model, assuming for simplicity, that most of the atoms
reside in the ground axial state. The model is briefly
summarized here and described in detail in the Supple-
mentary Information [30]. At zero temperature, the free
energy density f is equal to the energy density. For an
imbalanced mixture, with N2 << N1, we assume the 2D
energy density is

f =
1

2
n1 ǫF1 +

1

2
n2 ǫF2 + n2 Ep(2). (1)

Here, the first two terms are the energy density for a non-
interacting gas and the last term is the energy density for
minority polarons in state 2, which arises from scattering
in the bath of majority atoms in state 1; n1,2 and ǫF1,2

are the corresponding densities and local Fermi energies.
The 2-polaron energy per particle Ep(2) ≡ ym(q1) ǫF1,
where q1 ≡ ǫF1/Eb. The function ym(q1) is derived for
a 2D gas in Ref. [17]. For simplicity, we use an analytic
approximation [40], ym(q1) = −2/ log(1 + 2 q1). From
Eq. 1, we directly obtain the local chemical potentials,
µ1 = ∂f/∂n1 and µ2 = ∂f/∂n2 and the corresponding
local 2D pressure p = n1 µ1 + n2 µ2 − f . The chemical
potentials determine the spatial profiles in the trap.
The polaron model predictions for R1 and R2 are

shown as the upper (blue) and lower (red) solid curves in
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FIG. 3. Majority radii (upper-blue) and minority radii (lower-red) in units of the Thomas-Fermi radius for the majority for
EF/Eb = 6.6 (left panel), EF /Eb = 2.1 (middle panel) and EF/Eb = 0.75 (right panel). Dots: Data; Solid lines: 2D polaron
model for imbalanced mixture 0 ≤ N2/N1 ≤ 0.9 [30], 2D polaron model for balanced mixture N2/N1 = 1 [30]; Dashed lines:
Ideal Fermi gas prediction; Black circle upper right: 2D-BCS theory for a balanced mixture.

Fig. 3. Although the model is strictly valid only for small
N2/N1, we display the predictions based on Eq. 1 for the
imbalanced gas for N2/N1 = 0 up to N2/N1 = 0.9. For
N2/N1 = 1, we show the predictions for the balanced
mixture, which employs a spin-symmetrized free energy
density [30].

The central pressure for the balanced gas (N2 = N1)
is determined by the 2D central density n(0), which is
directly obtained from the measured central column den-
sity n1D(0). As discussed in the supplemental mate-
rial [30], p ∝ 1/n(0)2 and n(0) ∝ n2

1D(0)/N1. From this,
we obtain the 2D pressure at the trap center in units
of the ideal Fermi gas pressure for the same density, p̃,
Fig. 4. The red solid curve shows the 2D polaron model
prediction, for the same trap frequency ω⊥ as used to de-
termine RTF1 in the cloud profile measurements, with no
other adjustable parameters. For comparison, using the
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FIG. 4. Reduced 2D pressure at the trap center versus EF/Eb

for the balanced gas. Dots: Experiment; Solid red curve:
Prediction based on the polaron model for the balanced gas;
Dashed line: Prediction of 2D-BCS theory.

2D-BCS theory prediction [14, 39], where ǫF = µ+Eb/2,
the Gibbs-Duhem relation requires p̃ = 1 for all EF /Eb,
in contrast to the measurements [30].

We have also measured the central density ratio n2/n1

of the 2D gas as a function of N2/N1. First, we fit a
Thomas-Fermi 1D profile to each column density, from
which we find the corresponding 2D densities as described
above. Also, we employ an inverse Abel transformation
of the column densities to extract the peak 2D densi-
ties. Both methods yield similar results within 5%. We
show the density ratios for three interaction strengths in
Fig. 5. The agreement with the polaron model is rea-
sonably good at 832 G, where EF /Eb = 6.6. However,
as the interaction strength is increased to EF /Eb = 0.75
by increasing the dimer binding energy at 775 G, the 2D
central densities abruptly become balanced above a crit-
ical ratio N2/N1, right panel Fig. 5. To ensure that the
densities are balanced not just at the center, but over an
extended range, we examine the measured column den-
sity profiles in Fig. 2. The apparent presence of two peaks
at the edges in the column density difference versus x is
consistent with the y-integrated 2D shell structure of a
balanced core surrounded by an unpaired majority frac-
tion [30]. Note that double integration of the 3D shell
structure gives rise to flat top distributions [41].

Equal densities for any imbalance are not predicted by
the 2D polaron model, as the pressure determined for the
imbalanced gas from Eq. 1 is always greater than or equal
to the pressure for the balanced gas, contrary to the 3D
case where crossing of the two pressures determines the
critical polarization for the phase separation [13]. This
is not unexpected, as the simple polaron model with the
analytic approximation for the polaron energy ignores
non-monotonic behavior [42] on the molecular side of the
Feshbach resonance (B < 832 G), where it overestimates
the magnitude of Ep and does not include the effective
mass or molecular repulsion energy. Further, the polaron
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FIG. 5. Ratio of minority to majority 2D central densities for EF/Eb = 6.6 (left panel), EF /Eb = 2.1 (middle panel) and for
the strongest interactions EF/Eb = 0.75 (right panel). Blue dots: Data; Red solid line: 2D polaron model; Dashed black line:
Ideal Fermi gas prediction. Stronger interactions balance the central densities over an extended range of imbalance, in clear
disagreement with the polaron model.

model is derived for zero temperature and considers only
the ground axial state of motion in the trap. However,
for the experiments, we estimate the upper limit of the
gas temperature to be kBT/EF = 0.21, and a popu-
lation of the first excited axial state up to 20% for a
non-interacting gas [30]. For interacting mixtures, dimer
pairing decreases the local Fermi energy of both compo-
nents, suppressing the population of higher axial states,
which can be included in more complete treatments.

In conclusion, we have created and studied an imbal-
anced strongly interacting quasi-two-dimensional Fermi
gas. The 2D polaron model captures much of the behav-
ior of the spin-imbalanced normal fluid mixtures, suggest-
ing that polarons play an important role. However, more
precise calculations of the pressures for the balanced and
imbalanced components are needed to explain the ob-
served phase separation and critical spin-imbalance. Our
measurements will serve as a test for predicted phase
diagrams, which will help to reveal the structure of a
quasi-2D Fermi gas.
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