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We consider the effect of glide plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based
superconductors on pairing in spin fluctuation models. Recent theories have proposed that so-called
η-pairing states with nonzero total momentum can be realized and possess exotic properties such
as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that
η-pairing is inevitable when there is orbital weight at the Fermi level from orbitals with even and
odd mirror reflection symmetry in z; however, by explicit calculation, we conclude that the gap
function that appears in observable quantities is identical to that found in earlier, 1 Fe per unit cell
pseudo-crystal momentum calculations.

PACS numbers: 74.20.Rp, 74.70.Xa, 74.20.Mn, 74.20.Pq

The common element in the crystal structure of all
Fe-based superconductors is a two-dimensional plane of
Fe atoms on a square lattice with pnictogen/chalcogen
atoms sitting in alternating positions below or above the
center of each square [1–4]. The alternating buckling of
pnictogen/chalcogen atoms results in a unit cell with 2
inequivalent Fe atoms. A model that takes into account
all Fe d-orbitals therefore has 10 orbitals (5 d-orbitals per
Fe). In spite of this, most theoretical calculations (e.g.,
Refs. 5 and 6 and many others) have been carried out
using a 5-orbital model for an “unfolded” Brillouin zone
(BZ) of the 1-Fe unit cell, which appears to miss the ef-
fects of the out-of-plane pnictogen/chalcogen degrees of
freedom on the bandstructure. In particular, an impor-
tant question has been raised regarding whether these 5-
orbital calculations can correctly determine the supercon-
ducting properties such as the gap structure, given the
large non-perturbative effects of the pnictogen/chalcogen
potential that appear to be neglected in these studies.
In addition there are questions regarding the possibility
of odd parity spin singlet [7–9] and time reversal break-
ing [10] associated with the so called η-pairing [7–11].

To better understand this issue, we review the im-
plications of the glide plane symmetry of a single Fe-
pnictogen/chalcogen plane, as has been discussed be-
fore by various authors [12–17]: While the 1-Fe lattice
does not have translational symmetry since the two sub-
lattices A and B made up respectively of the two dif-
ferent Fe atoms are inequivalent, it is symmetric under
the glide plane symmetry operation Pz = Trσz , i.e., a
1 unit translation along the x- or y-direction Tr com-
bined with a reflection σz along z. As a consequence,
the diagonal intra-sub-lattice hopping between d orbitals
that are even under Pz (xy, x2 − y2, 3z2 − r2) and or-
bitals that are odd (xz, yz) changes sign between the
A- and B-sublattice. When transformed to the physi-
cal 1-Fe crystal momentum k-space, this leads to a mix-

ing between momenta k and k + Q with Q = (π, π)

of the type
∑

k,σ

[
txz,xy(k)c†xz,σ,k+Qcxy,σ,k + h.c.

]
, and

other similar terms between even and odd (with respect
to Pz) orbitals. Because of this, there are off-diagonal
propagators involving even and odd orbitals with mo-
menta k and k + Q. This has important consequences
with respect to the pairing: in addition to the standard
zero center of mass momentum pairs 〈cℓ1,↑,kcℓ2,↓,−k〉 for
ℓ1, ℓ2 either both even or both odd orbitals, there are
also nonzero total momentum η-pairs 〈cℓ1,↑,kcℓ2,↓,−k+Q〉
for ℓ1 even, ℓ2 odd or vice versa [10].
However, this mixing is absent if one uses the eigenval-

ues of Pz, i.e., the pseudo-crystal momentum k̃ to classify
the states [12–14]. This basically corresponds to shifting
the momentum of either the even or the odd orbitals by
Q. Here we choose the shift in the even orbitals so that
states defined in pseudo-crystal momentum k̃ are related
to the states defined with physical crystal momentum k

through

c̃ℓ,σ,k̃ =

{
cℓ,σ,k, if ℓ odd,

cℓ,σ,k+Q, if ℓ even.
(1)

The Hamiltonian is diagonal in k̃ and, as we will
discuss, the usual 5-orbital calculations, when per-
formed in this space, automatically take into account
the additional terms stemming from the mixing be-
tween k and k + Q in the physical 1-Fe crystal mo-
mentum k space. Here η-pairing is implicitly included
since pairs like 〈c̃xy,↑,k̃c̃xz,↓,−k̃

〉 in k̃-space transform to
〈cxy,↑,kcxz,↓,−k+Q〉 in k-space as indicated in Fig. 1(c).
Here we study the parity properties of these terms, the
way in which they combine with normal (zero center of
mass momentum) pairing states, and their implications
for the gap structure in the physical crystal momentum
k-space. We calculate the one-particle spectral function
in the proper crystal momentum space and show that the
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energy gaps deduced from spectral function leading edges
correspond to those calculated in the 1-Fe zone, although
the quasiparticle weights are strongly renormalized. We
conclude that, as usual, an even frequency gap for a sin-
glet pair has even parity in the band basis and there is no
time reversal symmetry breaking as a result of η-pairing.
To this end, we use the 2D 5-orbital tight-binding

model for LaOFeAs introduced in Graser et al. [6]. This
model was obtained from a Wannier transformation of an
LDA bandstructure calculation of this compound with
a 2-Fe 10-orbital model and performing a gauge trans-
formation corresponding to a π-phase shift of the even
orbitals on the B-sublattice, which in momentum space
corresponds to a transformation to pseudo-crystal k̃ mo-
mentum. The Fermi surface of this model in the 1-Fe
pseudo-crystal momentum k̃ space is shown in Fig. 1(a)
with the dominant orbital weights indicated by the color-
ing. The corresponding Fermi surface in physical crystal
momentum k-space is plotted in Fig. 1(c). According to
Eq. (1), it is obtained by shifting the even orbital contri-
bution by Q. The size of the points indicates the sum of
the orbital weights.
This model is then supplemented with the usual Hub-

bard (intra-orbital U and inter-orbital U ′) and Hund
(Hund’s rule coupling J and pair-hopping J ′) interac-
tions. Here we assume spin rotational invariance so
that U ′ = U − 2J and J ′ = J , set U = 1.3 eV and
J = 0.2 eV, and take 〈n〉 = 5.95. We then use a random-
phase approximation (RPA) to calculate the pairing in-
teraction Γℓ1ℓ2ℓ3ℓ4(k̃, k̃

′) which represents the particle-
particle scattering of electrons in orbitals ℓ1, ℓ4 with mo-
menta (k̃,−k̃) to electrons in orbitals ℓ2, ℓ3 and momenta
(k̃′,−k̃′). The pairing strengths λα for various pairing
channels α are then given as the eigenvalues of

−
∑

j

∮

Cj

dk̃′
‖

(2π)2vF (k̃′
‖)
Γij(k̃, k̃

′)gα(k̃
′) = λαgα(k̃) . (2)

Here, Γij(k̃, k̃
′) represents the irreducible vertex for scat-

tering of a pair of electrons (k̃ ↑,−k̃ ↓) on Fermi pocket
Ci to (k̃′ ↑,−k̃′ ↓) on pocket Cj . It is obtained from

Γℓ1ℓ2ℓ3ℓ4(k̃, k̃
′) as

Γij(k̃, k̃
′) =

∑

ℓ1,ℓ2,ℓ3,ℓ4

ã
ℓ∗
1

ν,k̃
ã
ℓ∗
4

ν,−k̃
Γℓ1ℓ2ℓ3ℓ4(k̃, k̃

′)

×ãℓ2
µ,k̃′

ãℓ3
µ,−k̃′

, (3)

where the matrix-elements ãℓ
ν,k̃

= 〈ℓ̃k|ν̃k〉 transform the

orbital basis to the band representation in pseudo-crystal
momentum space. The momenta k̃ and k̃′ in Eq. (3) are
restricted to the Fermi surface and vF (k̃

′
‖) is the Fermi

velocity. The eigenfunction gα(k̃) for the largest eigen-
value determines the leading pairing instability and pro-
vides an approximate form for the superconducting gap
∆̃(k̃) ∝ gα(k̃). The structure of the leading gap function
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FIG. 1. (Color online) (a) Fermi surfaces and (b) the lead-
ing gap function for the 5-orbital model in the zone of the
pseudo-crystal momentum k̃. The Fermi surface is colored
to show the dominant orbital weight (dxz red, dyz green, dxy
blue). (c) The unfolded Fermi surface in the physical crystal
momentum k-space. The size of the dots is proportional to
the sum of the orbital weights of the spectral function and
the color shows the dominant orbital weight. The red line
denotes the boundary of the 2-Fe per unit cell Brillouin zone.
An “η” pair (k ↑, −k+Q ↓) is shown. (d) Comparison of the
angle dependence of the leading gap function calculated from
the 5-orbital model (orange line) and the 10-orbital model
(blue dots) on the various Fermi pockets. Here we denote the
two crossed electron pockets in the 10-orbital model at the
X-point as β1 and β′

1 and at the Y -point β2 and β′

2. The
gaps along the β′

1,2 pockets are not plotted since β′

1 = β2 and
β′

2 = β1 by symmetry.

gα(k̃) with s±-wave symmetry on the Fermi surface is
shown Fig. 1(b).

We have also calculated the leading gap function and
eigenvalue in the original 10-orbital model, from which
the 5-orbital model was derived through a gauge trans-
formation as discussed above. We obtain the same lead-
ing eigenvalue λ = 0.76 in the 10-orbital as in the 5-
orbital model, and Fig. 1(d) shows that the gap function
obtained in the 10-orbital model is identical to what is
obtained in the 5-orbital model. From this it is clear
that calculations performed in the 1-Fe 5-orbital pseudo-
crystal momentum space indeed contain all the infor-
mation of the more complex 10-orbital calculation per-
formed in the 2-Fe crystal momentum space.

As discussed above, this includes the information
about η-pairing terms in the physical 1-Fe momentum k-
space. In order to analyze the structure of these terms,
we transform the gap function ∆̃ν(k̃) we obtained in
pseudo-crystal momentum space to 1-Fe physical crys-
tal momentum k-space. To this end, we first transform
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FIG. 2. (Color online) Gap functions ∆ℓ1ℓ2(k) in the orbital
basis plotted on the Fermi surface in the physical momen-
tum BZ. When ℓ1 and ℓ2 have the same z-reflection sym-
metry one has normal (k,−k) pairing and the gap function
∆N

ℓ1ℓ2
(k) is real and has even parity. When ℓ1 and ℓ2 have

different z-reflection symmetry, one has (k,−k+Q) η pairing
and ∆η

ℓ1ℓ2
(k) is purely imaginary and has odd parity.

∆̃ν(k̃) from band to orbital space and then to k-space.
This gives normal pairing terms with zero center of mass
momentum,

〈cℓ1↑,kcℓ2↓,−k − cℓ1↓,kcℓ2↑,−k〉 ∝ ∆N
ℓ1ℓ2

(k) = (4)




ãℓ1ν,kã
ℓ2
ν,−k∆̃ν(k), ℓ1, ℓ2 odd,

ãℓ1ν,k−Qãℓ2ν,−k+Q∆̃ν(k −Q), ℓ1, ℓ2 even,

0, otherwise,

and η-pairing terms with center of mass momentum Q,

〈cℓ1↑,kcℓ2↓,−k+Q − cℓ1↓,kcℓ2↑,−k+Q〉 ∝ ∆η
ℓ1ℓ2

(k) = (5)




ãℓ1ν,kã
ℓ2
ν,−k∆̃ν(k), ℓ1 odd, ℓ2 even,

ãℓ1ν,k−Qãℓ2ν,−k+Q∆̃ν(k−Q), ℓ1 even, ℓ2 odd,

0, otherwise.

Here and in the following we have replaced k̃ by k for
odd and k + Q for even orbitals ℓ as noted in Eq. (1).
For a given Fermi momentum k, ν labels the band that
crosses the Fermi energy at k.
Fig. 2 shows the gap functions ∆ℓ1ℓ2(k) for four differ-

ent combinations of orbitals ℓ1 and ℓ2. From panels (a)
and (b) one sees that when ℓ1 and ℓ2 have the same z-
reflection symmetry, one has normal (k,−k) pairing and
the gap function ∆N

ℓ1ℓ2
(k) is real and has even parity,

i.e., ∆N
ℓ1ℓ2

(−k) = ∆N
ℓ1ℓ2

(k). In contrast, when ℓ1 and ℓ2
have different z-reflection symmetry, one has (k,−k+Q)
η-pairing. In this case ∆η

ℓ1ℓ2
(k) is purely imaginary and

has odd parity, i.e., ∆η
ℓ1ℓ2

(−k) = −∆η
ℓ1ℓ2

(k). Note that

these gaps have the same behavior under mirror reflec-
tions as the orbitally resolved gaps of Casula and Sorella
[15]. Here we stress that the odd-parity and imagi-
nary nature of these terms in orbital space arises en-
tirely from the product of matrix-elements ãℓ1ν,kã

ℓ2
ν,−k

and
therefore is merely a reflection of the glide plane sym-
metry of the Fe-pnictogen/chalcogen plane. It does not
reflect any exotic behavior of the pairing interaction. We
also point out that time-reversal symmetry requires that
∆ℓ1ℓ2(k) = ∆∗

ℓ1ℓ2
(−k) for both the normal and η-gaps in

Eqs. (4) and (5), respectively. Because the normal gap
∆N

ℓ1ℓ2
(k) has even parity and is purely real, it satisfies

time-reversal symmetry, as does the odd parity, purely
imaginary η-pairing gap ∆η

ℓ1ℓ2
(k). Both normal and η-

pairing terms, however, coexist in orbital space and con-
tribute to the pairing condensate.
This raises the question of how these two terms com-

bine, given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing,

∆N
ν (k) = ∆N

odd(k) + ∆N
even(k) , (6)

where

∆N
odd(k) =

∑

ℓ1,ℓ2 odd

ã
ℓ∗
1

ν,kã
ℓ∗
2

ν,−k∆
N
ℓ1ℓ2

(k) , (7a)

∆N
even(k) =

∑

ℓ1,ℓ2 even

ã
ℓ∗
1

ν,k−Qã
ℓ∗
2

ν,−k+Q∆N
ℓ1ℓ2

(k) . (7b)

Similarly, we obtain for the η-pairing terms,

∆η
ν(k) = ∆η

odd-even(k) + ∆η
even-odd(k) , (8)

where

∆η
odd-even(k) =

∑

ℓ1 odd,ℓ2 even

ã
ℓ∗
1

ν,kã
ℓ∗
2

ν,−k∆
η
ℓ1ℓ2

(k) , (9a)

∆η
even-odd(k) =

∑

ℓ1 even,ℓ2 odd

ã
ℓ∗
1

ν,k−Qã
ℓ∗
2

ν,−k+Q∆η
ℓ1ℓ2

(k) . (9b)

Here we have used the fact that the matrix-elements aℓν,k,
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space, are given by the matrix-elements in pseudo-crystal
momentum space, ãℓν,k for ℓ denoting an odd orbital, and

ãℓν,k−Q for ℓ denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function ∆̃ν(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and η-pairing terms in the physical crystal mo-
mentum space, i.e.,

∆̃ν(k) = ∆N
odd(k) + ∆N

even(k +Q)

+ ∆η
odd-even(k) + ∆η

even-odd(k+Q) . (10)
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FIG. 3. (Color online) (a) The leading gap function

∆̃(k̃) in the band representation calculated in the 5-orbital
model in pseudo-crystal momentum space (red=positive,
blue=negative). When transformed to physical crystal mo-
mentum k-space, the gap splits into normal even-even and
odd-odd contributions ∆N

odd(k)+∆N
even(k+Q) plotted in (b)

and even-odd and odd-even η contributions ∆η
odd-even

(k) +
∆η

even-odd
(k + Q) shown in (c). In the band representation,

all the contributions have even parity.

Note that the even terms have their momentum shifted
by Q so they appear on the same Fermi pockets as the
odd terms. Fig. 3 shows a graphical representation of this
relation by plotting a 3D representation of ∆̃ν(k) in the
top panel, its normal contribution ∆N

odd(k)+∆N
even(k+Q)

in the middle panel and its η contribution ∆η
odd-even(k)+

∆η
even-odd(k+Q) in the bottom panel. One sees that after

the transformation to band representation, the η-pairing
term has even parity (and is real), just like the normal
pairing contribution. This results from the combination

of the product of matrix-elements ã
ℓ∗
1

ν,kã
ℓ∗
2

ν,−k, which has
odd parity and is purely imaginary, with the odd-parity
and imaginary ∆η

ℓ1ℓ2
(k) for odd-even combinations of ℓ1

and ℓ2. Thus, as usual, an even frequency gap in the band
basis has even parity for a singlet pair. From Eqs. (4–
9) it is straighforward to show that the normal and η-
contributions to the gap have the same sign and share

the same nodal structure in case of a nodal gap [18].
Thus, while the η-contribution is significant in the am-
plitude of the total gap, it does not affect its sign and
nodal structure and therefore does not qualitatively alter
the low temperature thermodynamic properties. This is
discussed in more detail in the Supplementary Material.
Finally, we calculate the spectral function

A(k, ω) =
∑

ℓ,ν

|〈ℓk|ν̃k〉|2Ãν(k̃, ω)

as measured in ARPES experiments in the proper 1-
Fe crystal momentum k-space. Here, Ãν(k̃, ω) =
u2
ν(k̃)δ(ω−Eν(k̃))+ v2ν(k̃)δ(ω+Eν(k̃)) is the BCS spec-

tral function in the pseudo-crystal momentum space with

Eν(k̃) =

√
ǫ2ν(k̃) + ∆̃2

ν(k̃) and the BCS coherence factors

u2
ν(k̃) = [1+ ǫν(k̃)/Eν(k̃)]/2 and v2ν(k̃) = 1−u2

ν(k̃). Re-
alizing that

〈ℓk|ν̃k〉 =

{
ãℓν,kδk,k̃, ℓ odd,

ãℓν,k−Qδ
k−Q,k̃, ℓ even,

(11)

one arrives at

A(k, ω) =
∑

ν

[
∑

ℓ odd

|ãℓν,k|
2Ãν(k, ω)

+
∑

ℓ even

|ãℓν,k−Q|2Ãν(k−Q, ω)

]
. (12)

Thus, the superconducting gap that enters A(k, ω) as
measured in ARPES experiments is given by the gap
function ∆̃ν(k̃) calculated in the 5-orbital 1-Fe zone in
pseudo-crystal momentum space and no further transfor-
mation is necessary. ∆̃ν(k̃) implicitly encodes the strong
symmetry breaking potential associated with the pnic-
togen/chalcogen atom. The gap ∆̃ν(k̃) entering the first
ℓ = “odd” term in Eq. (12) is shown in Fig. 3(a) while the
gap entering the second ℓ = “even” contribution which
appears on the “shadow” pockets is obtained by shifting
the gap by Q. As in the normal state [19–23] the spec-
tral weight in the superconducting state associated with
each contribution is modulated by the orbital weights
|ãℓν,k|

2 and |ãℓν,k−Q|2, respectively, and this weight can
differ substantially between the main and shadow pock-
ets as seen in Fig. 1(c). The spectral functions for both
the normal and superconducting states are discussed in
more detail and shown in the Supplementary Material.
To summarize, we have carried out microscopic cal-

culations of the superconducting gap structure in 1 Fe
and 2 Fe per unit cell models and shown that η-pairing
is an important ingredient in the superconducting con-
densate. We have demonstrated that it contributes with
the usual even parity symmetry in band space and that
time reversal symmetry is preserved, in contrast to recent
proposals in the literature. Finally we have shown that
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the gap function, which appears in observable quantities,
is identical to that found in earlier, 1 Fe per unit cell
pseudo-crystal momentum calculations.
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P. Le Fèvre, F. Bertran, C.-H. Lin, W. Ku, A. Forget,
and D. Colson, Phys. Rev. B 86, 075123 (2012).

[23] S. Kong, D. Liu, S. Cui, S. Ju, A. Wang, X. Luo, L. Zou,
X. Chen, G. Zhang, and Z. Sun, arXiv:1409.2300 (2014).


