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4 LGGE, CNRS/Université Grenoble Alpes, 38401 Grenoble, France
5 LMS, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France

(Dated: February 13, 2015)

Macroscopic crystal plasticity is classically viewed as an outcome of uncorrelated dislocation motions pro-
ducing Gaussian fluctuations. An apparently conflicting picture emerged in recent years emphasizing highly
correlated dislocation dynamics characterized by power law distributed fluctuations. We use acoustic emission
measurements in crystals with different symmetries to show that intermittent and continuous visions of plastic
flow are not incompatible. We demonstrate the existence of crossover regimes where strongly intermittent events
coexist with a Gaussian quasi-equilibrium background and propose a simple theoretical framework compatible
with these observations.

Two contradicting pictures of dislocation-mediated plas-
tic flow are discussed in the literature [1, 11]. The clas-
sical paradigm assumes that correlations among individual
dislocations are weak and fluctuations are roughly Gaussian,
which makes the homogenized description adequate. A dif-
ferent point of view emerged from the analysis of high res-
olution acoustic emission (AE) data in plastically deforming
HCP crystals which showed that temporal fluctuations may be
power-law distributed in size and energy [2] and may be clus-
tered in both space [3] and time [4]. These observations, sug-
gesting that averages do not represent typical behavior, were
corroborated by the study of statistics of slip events in micro-
and nano-pillars [5, 6] for FCC and BCC metals and supported
by numerical models [2, 7, 10, 12].

In this paper we provide the first experimental evidence that
intermittent and continuous visions of plastic flow are not in-
compatible and that in some crystalline materials mild (near
Gaussian) and wild (infinite variance) fluctuations can coex-
ist. It has been long noticed that AE in plastically deformed
crystals may include both continuous background and discrete
bursts [17]. While the continuous AE was thoroughly studied,
the bursts were generally simply counted [18], or omitted as
spurious even though sudden slips at irregular intervals could
be also observed directly [19]. We show that mild fluctua-
tions, revealing uncorrelated dislocation motions, prevail in
crystals where highly constrained dislocation entanglements
screen long-range interactions and prevent cooperative behav-
ior. Instead, wild fluctuations, representing highly synchro-
nized restructuring events, dominate in crystals where uncon-
strained long-range elastic interactions allow dislocations to
self-organize. In the intermediate crossover regimes where
strongly intermittent events coexist with a Gaussian quasi-
equilibrium background the observed scaling exponents are
non-universal.

To interpret these observations we study a simple stochas-
tic mean-field model where dislocation flow is represented
by a Gibrat-type proportional dynamics [29]. Self-consistent
single-site models of this type with different types of multi-
plicative noise were used before to explain spatial scale in-

variance of plastic flows in the hardening regime [20] and to
describe mean field interface depinning of dislocations [9].
However, none of the existing models was able to capture
statistics of avalanches observed in our experiments, which
is Gaussian for small events and power law for large events.

Experiment. We studied the acoustic signature of plas-
tic events during monotonic loading of HCP (ice, cadmium,
Zn0.08%Al) and FCC (copper, aluminum, CuAl alloys)
macroscopic (cm to dm) single and polycrystals. Addi-
tional cyclic tension-compression tests were performed on
pure (99.95%) aluminum polycrystals with large (∼ 5 mm)
grain sizes. While FCC crystals have a large number of active
slip planes, which facilitates formation of dislocation junc-
tions and leads to significant isotropic hardening [21], HCP
crystals have a small number of easy slip planes, only the basal
one for the materials tested here. The absence of 3D entan-
glements in HCP crystals enables collective effects manifest-
ing themselves through strong kinematic hardening induced
by long-range elastic interactions. The measured AE signals
(Fig.1) consistently substantiate these differences over a range
of deformational regimes (compression creep, uniaxial mono-
tonic tension, tension-compression cyclic loading). The de-
tails of the experimental method can be found in [15].

In ice crystals (HCP), the AE has a form of an intermittent
signal with a negligible continuous background (Fig. 1a); cad-
mium crystals (also HCP) show a similar picture (Fig. 1b). In-
stead, in copper crystals (FCC), the measured acoustic signal
is mainly continuous, reaching its maximum at plastic yield,
with only occasional bursts above this background (Fig. 1c).
During cyclic loading of aluminum crystals (FCC), the acous-
tic signal is essentially continuous and symmetric in tension
and compression, hence revealing its plastic origin. The con-
tinuous noise, however, is interrupted by bursts, in average
less than 1 per loading cycle (Fig. 1d).

Remarkably, for both classes of crystals, the bursts are
power law distributed in maximum amplitude, p(A0) ∼
A−τA

0 , and in dissipated energy, p(E) ∼ E−τE (Fig.2). The
exponents, estimated from a maximum likelihood method
[22] are different for different types of crystals: for ice
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Figure 1: (Color online) Acoustic power recorded during plastic deformation. (a) Single crystal of ice (Ih) under uniaxial compression (
creep at constant stress σ = 0.56 MPa, T = −10oC). (b) Cadmium single crystal under monotonic uniaxial tension (ε̇ = 1.3 · 10−3s−1,
T = 20oC). (c) Copper single crystal under monotonic uniaxial tension (ε̇I = 1.9 · 10−2s−1, T = 20oC). (d) Aluminum polycrystal (grain
size ∼ 5 mm) under cyclic uniaxial strain control (εmin/εmax = −1,∆tcycle = 10s, ∆ε = 0.95%, T = 20oC). Red curves: acoustic power
sampled at 1 Hz. Black dashed curves: strain (a) or stress (b, c, d). Blue dotted lines indicate the level of instrumental noise.

τE = 1.40 ± 0.03, for cadmium τE = 1.45 ± 0.05, for alu-
minum τE = 2.00 ± 0.05 and for copper and CuAl alloys
τE = 1.54±0.08. The average values and the associated stan-
dard deviations were obtained, for each material, over several
tests; in case of ice, our previous estimates of τE based on
a least-square fit of data [2] gave systematically larger values
1.5−1.6. The amplitudeA0, which is a proxy of the strain as-
sociated with the avalanche, scales as A0 ∼ E1/2 [15], mean-
ing that τA = 2τE − 1, i.e. τA = 1.8 for ice and τA = 3.0 for
Al. Based on the value of τA, plastic fluctuations in ice can be
qualified as wild with an undefined mean; for aluminum, with
the variance diverging, we are just at the border between wild
and mild fluctuations [13].

In contrast, the continuous AE signal sampled at 5MHz is
always near-Gaussian independently of the material and does
not display any detectable intermittency or time clustering, see
Fig. 3 and [15]. This is in agreement with the classical per-
spective where plasticity is viewed as a sum of independent
events similar in sizes and durations. The relative contribu-
tion of plastic avalanches responsible for bursts can be esti-
mated by the amount of AE power recorded above the level
of continuous signal with the acoustic power (in aJ/s) of the
environmental noise first removed. Our measurements (see
Table S1 in [15]) show that ice single and poly-crystals rep-
resents a paradigmatic example of intermittent plasticity with
nearly 100% of AE power released through AE bursts. In
contrast, for aluminum, the contribution due to avalanches is
small, reaching under cyclic loading at most few percent dur-
ing the first cycles, when the dislocation sub-structure has not
yet fully developed. Copper andCuAl alloys stay in between,
as it is also clear from the comparison of the exponents.

Figure 2: (Color online) AE energy probability density functions for
bursts detected during: a uniaxial compression test on ice Ih (red
open symbols; constant stress σ = 0.56 MPa, T = −10oC, see Fig.
1a), a monotonic tension test on copper (black semi-open symbols,
T = 20oC, ε̇ = const), and a cycling loading test on aluminum
under uniaxial tension-compression (blue closed symbols, cycles 1
to 2000, see Fig. 1d). The PDFs have been shifted vertically for
clarity.

In summary, our observations show that HCP crystals with
highly anisotropic slip (ice, Cd, Zn) exhibit correlated scale-
free flows, facilitated by the dominance of long-range elas-
tic interactions. Instead, in the studied FCC materials (Cu,
Al, CuAl alloys), intermittent and continuous plastic flows
coexist. The continuous component signify the prevalence
of small, uncorrelated dislocation motions taking place in-
side sub-structural units (cells, labyrinths, ..) that effectively
screen long-range interactions. The large bursts can be at-
tributed to major autocatalytic cascades of unlocking events
[21] leading to fundamental rearrangements of the transient
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Figure 3: (Color online) Raw AE signal recorded during the cyclic
loading of a polycrystal aluminum as in Fig. 1a. (a) The red solid line
shows the evolution of the AE power, sampled at 10Hz. The stress is
shown as a black dashed line. The inset shows the raw signal sampled
at 5MHz during 0.1s near the plastic yield. (b) Distribution of local
extrema of the acoustic signal (in V ) shown as a normal probability
plot (skewness ζ = 0.02, excess kurtosis κ = −0.27).

dislocation sub-structures. This suggests that the commonly
observed quasi-equilibrium dislocation patterns in FCC crys-
tals are only marginally stable and their restructuring can be
occasionally triggered by insignificant changes in the global
force balance. The intermediate behavior of Cu might be ex-
plained by a smaller stacking fault energy compared to Al,
favoring the dissociation of dislocations and kinematic hard-
ening.

Modeling. A simple mean field type model, incorporat-
ing only the essentials of plausible mechanisms, provides a
basic explanation for the coexistence of intermittent and con-
tinuous fluctuations. As a point of departure, we use conven-
tional mesoscopic framework and assume that the evolution of
the spatially averaged density of mobile dislocations ρ is de-
scribed (in a narrow window of stress variation) by a kinetic
equation [23], dρ/dγ = a − cρ, where a ≥ 0 accounts for
nucleation rate whereas c ≥ 0 characterizes the prevalence of
annihilation/immobilization over multiplication. Here we use
the local shear strain γ as a parameter related to time through
the Orowan relation. According to this model, in the steady
state regime the average dislocation density is ρc = a/c,
which introduces a characteristic scale.

A shortcoming of this coarse grained description is that it
is fully deterministic. Stochastic models of plasticity with ei-
ther additive [28] or multiplicative [20] noise have been also
considered in the literature. The account of noise in the local
kinetics of mobile dislocations is crucial because the yielding
system is at the state of marginal stability where fluctuations
can be greatly enhanced and can interfere with the macro-
scopic evolution. If we make the simplest assumption that
nucleation is deterministic but, due to environmental fluctua-
tions, the annihilation rate c is randomly perturbed, we obtain
the stochastic equation

dρ/dγ = a− (c−
√
2Dξ(γ))ρ, (1)

where 〈ξ(γ)〉 = 0, 〈ξ(γ1), ξ(γ2)〉 = δ(γ1 − γ2) and D is a
constant parameter characterizing the intensity of fluctuations
and introducing a competing characteristic scale ρD = a/D.
While equation (1) is linear, the nonlinearity of the micro-
scopic dynamics is represented through the randomness. In

particular, the multiplicative noise describes the autocatalytic
effect when dislocation clusters react to perturbations in a col-
lective manner amplifying the effect of the noise proportion-
ally to their size [14]. Such cooperative response implies the
presence of long-range fields that are not explicitly resolved
in our zero-dimensional model; we also neglect quenched dis-
order and diffusion whose account would allow one to model
spatial intermittency [39] observed in microscopic models of
crystal plasticity [7].

Multiplicative stochastic closure of the coarse grained mod-
els exemplified by (1) is rather common in the study of
marginally stable driven systems [14, 37] including turbulence
[25], absorbing phase transitions [26] and depinning [27]. A
link between the multiplicative random walks in the cluster
size space and the emergence of criticality in systems with
many degrees of freedom was established in [30].

To find the stationary probability distribution of the dislo-
cation density p = ps(ρ) we need to solve the corresponding
Fokker-Planck equation. We interpret it in the Stratonovich
sense by assuming ξ(γ) is a colored noise with vanishing auto-
correlation time [24]

dp

dγ
=

d

dρ

[
[(c+D)ρ− a]p+Dρ2

dp

dρ

]
. (2)

In the stationary regime [31]

ps(ρ) ∼ e−
a
Dρ ρ−(1+ c

D ). (3)

At large values of ρ this distribution exhibits a power law tail
ρ−α with exponent α = 1 + c/D. Instead, around the maxi-
mum located at ρ = a/(c + D) the distribution is Gaussian-
like. When the noise is weak, c/D � 1, the fluctuations
are mild, but as the strength of the noise increases, the sys-
tem undergoes a noise-induced transition [32] with fluctua-
tions becoming wild at ρD/ρc = c/D ≤ 2. If we use Ito
interpretation, the power law exponent in the tail changes to
α = 2 + c/D, however the basic structure of the stationary
distribution remains the same.

To link the proposed model with our AE measurements, we
recall that the amplitude A0 is proportional to the number of
dislocations, involved in the avalanche, times their average
length [15], hence to ρ, thus giving α = τA. This identifi-
cation, which we checked to be respected by the dislocation
density fluctuations in the microscopic model [7], allows one
to interpret observed behaviors in terms of the values of the
parameters a, c,D

First of all we note that to describe an idealized, single
plane plastic flow without considerable nucleation and anni-
hilation, modeled at the micro-level in [8], we should con-
sider the case when both a/D and c/D are small. Then (1)
reduces to a logarithmic Brownian motion and α = τA → 1
(Zipf law). In such systems dislocation dynamics is governed
exclusively by elastic long-range interactions and this limit is
approached by our HCP crystals where dislocation entangle-
ments are minimal. In particular, our identification suggests
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that for ice c/D = 0.8 and explains why in the correspond-
ing experiments the Gaussian-like background was difficult to
detect behind the experimental noise.

In materials characterized by stronger isotropic hardening,
such as the FCC crystals tested here, short-range interactions
are responsible for the formation of transient sub-structures
that screen elastic interactions. Therefore one can expect that
c/D ≥ 1 , and accordingly, we obtain c/D = 2.0 for Al. In
this case numerous independent nucleation events originating
from cell walls would lead to continuous AE [33]. The ob-
servations also imply that the value of a is large enough to
ensure a significant presence of the Gaussian plasticity. One
can speculate that for bulk BCC materials in the low tempera-
ture regimes, where the Peierls stress is high, the appropriate
scaling is ρD � ρc and the statistics of fluctuations should
be essentially Gaussian. This conjecture is supported by the
fact that in BCC crystals screw dislocation segments are not
restricted to a single slip plane, thus favoring bulk multipli-
cation [6], and by TEM in-situ straining experiments show-
ing parallel screws of both signs moving rather smoothly and
experiencing quasi-continuous cross slip without any sudden
bursts [34].

While these predictions are compatible with the difference
between the fluctuation patterns in the bulk materials analyzed
here, the situation is different for non-bulk systems such as
nano-pillars where power law distribution of slip sizes was
observed in both FCC and BCC crystals with an exponent of
τA ∼ 1.5 [5, 6], meaning τE ∼ 1.25. In these tests, however,
the number of dislocations was small and their motion was
limited to a single slip plane [5, 35], thus precluding dislo-
cation entanglements and short-range interactions (similar to
bulk hexagonal crystals). The near critical behavior with low
values of exponents in these non-bulk materials can be linked
to the dominance of surface effects with limited nucleation
and annihilation [36]. One can then argue that smaller is not
only ’stronger’ but is also ’wilder’.

Despite the ’wild’ behavior at small sizes, one can expect
for BCC and FCC crystals a gradual transition from strongly
intermittent to near Gaussian behavior of fluctuations as sam-
ple size increases. This is in full agreement with observa-
tions pointing towards smaller crossover lengths in BCC than
in FCC nano-pillars [6].

To conclude, we studied non-equilibrium steady state
regimes of plastic flow, when a system continuously but un-
successfully attempts to equilibrate by developing transient
patterns with competing characteristic scales. The equilibra-
tion is never completely successful due to brutal rearrange-
ments involving a broad range of scales. This picture is con-
tained in our Eq. (1) which can serve as a stochastic rheo-
logical relation providing a closure for continuum plasticity
[38] . The implied integration of intermittent and continuous
regimes of plastic flow in a single computational framework
will be an important step towards a reliable control of plastic
deformation at micro and nano scales.

Acknowledgments. This work was supported by the French
ANR-2008 grant EVOCRIT. J.W. and L.T. acknowledge the

hospitality of the Aspen Center for Physics, supported by the
NSF Grant No. PHY-1066293.

[1] M. Zaiser, Adv. Phys. 55, 185 (2006).
[2] M. Miguel, A. Vespignani, S. Zapperi, J. Weiss, and J. Grasso,

Nature 410, 667 (2001).
[3] J. Weiss and D. Marsan, Science 299, 89 (2003).
[4] J. Weiss and M.-C. Miguel, Mat. Sci. Eng. A 387-389 (2004).
[5] D. Dimiduk, C. Woodward, R. LeSar, and M. Uchic, Science

312, 1188 (2006); M. Zaiser, J. Schwerdtfeger, A. Schneider,
C. Frick, B. Clarck, P. Gruber, and E. Arzt, Phil. Mag. 88,
3861 (2008).

[6] S. Brinckmann, J. Y. Kim, and J. R. Greer, Phys. Rev. Lett. 100
(2008).

[7] O. U. Salman and L. Truskinovsky, Phys. Rev. Lett. 106 (2011);
O. U. Salman and L. Truskinovsky, Int. J. Eng. Sci. 59, 219
(2012).

[8] P. Ispanovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, and
M. Alava, Phys. Rev. Lett. 112, 235501 (2014).

[9] S. Papanikolaou, D. M. Dimiduk, W. Choi, J. P. Sethna, M. D.
Uchic, C. F. Woodward, and S. Zapperi, Nature 490, 517
(2012); M. LeBlanc, L. Angheluta, K. Dahmen, and N. Gold-
enfeld, Phys. Rev. E 87, 022126 (2013).

[10] N. Friedman, A. T. Jennings, G. Tsekenis, J. Y. Kim, M. L. Tao,
J. T. Uhl, J. R. Greer, and K. A. Dahmen, Phys. Rev. Lett. 109
(2012).

[11] A. S. Argon, Phil. Mag. 93, 3795 (2013).
[12] F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi,

Science 318, 251 (2007).
[13] I. I. Eliazar and M. H. Cohen, Phys. Rev. E 88 (2013).
[14] Z. Huang and S. Solomon, Eur. Phys. J. B 20, 601 (2001).
[15] See Supplemental Material [url], which includes references

[16, 17], for the experimental methodology, the acoustic source
model, the analysis of intermittency of the raw signal and the
summary of the energy contributions due to different types of
fluctuations.

[16] D. Rouby, P. Fleischman, C. Duvergier, Philosophical Maga-
zine A 47, 689 (1983); T. Richeton, J. Weiss, F. Louchet, Acta
Materiala 53, 4463 (2005); J. Weiss, F. Lahaie, J. R. Grasso,
J. Geophys. Res. 105, 433 (2000); J. Weiss et al., Phys. Rev.
B 76, 224110 (2007); T Richeton, PhD Thesis INP Grenoble
(2006); J. Weiss, J.R. Grasso, J. Phys. Chem. B 101, 6113
(1997); P. Fleischmann, F. Lakestani, J.C. Baboux, Mat. Sci.
Eng. 29, 205 (1977); A. Slimani, P. Fleischmann, R Fougeres,
J. Phys. III France 2, 933 (1992); J. Chicois, R. Fougeres,
G. Guichon, A. Hamel, A. Vincent, Acta Metallurgica 34, 2157
(1986); M.A. Lebyodkin et al., Phys. Rev. B 79, 174114 (2009);
M. Videm, N. Ryum, Mater. Sci. Eng. A 219, 1 (1996).

[17] D. Rouby, P. Fleischman, and C. Duvergier, Phil. Mag. A 47,
671 (1983); N. Kiesewetter and P. Schiller, Phys. Stat. Sol. 38,
569 (1976).

[18] D. James and S. Carpenter, J. Appl. Phys. 42, 4685 (1971).
[19] E. d. C. Andrade, Proc. R. Soc. London A 84, 1 (1910);

R. Becker and E. Orowan, Z. Phys. 79, 566 (1932); F. Lorenzo
and C. Laird, Mat. Sci. Eng. 52, 187 (1982); J. Weiss,
T. Richeton, F. Louchet, F. Chmelik, P. Dobron, D. Entemeyer,
M. Lebyodkin, T. Lebedkina, C. Fressengeas, and R. Mc Don-
ald, Phys. Rev. B 76, 224110 (2007).

[20] P. Hahner, Acta Mat. 44, 2345 (1996); P. Hahner, K. Bay, and
M. Zaiser, Phys. Rev. Lett. 81, 2470 (1998).



5

[21] B. Devincre, T. Hoc, and L. Kubin, Science 320, 1745 (2008).
[22] A. Clauset, C. R. Shalizi, and M. E. J. Newman, SIAM Rev.

51, 661 (2009).
[23] P. Gillis and J. Gilman, J. Appl. Phys. 36, 3370 (1965); A. Vino-

gradov, I. Yaskinov, and Y. Estrin, Phys. Rev. Lett. 108, 205504
(2012).

[24] N. G. Van Kampen, Stochastic processes in physics and chem-
istry (Elsevier, 1992); R. Kupferman, G. Pavliotis, and A. Stu-
art, Phys. Rev. E 70, 036120 (2004).

[25] B. Birnir, J. Nonl. Sci. 23, 657 (2013).
[26] M. Henkel, H. Hinrichsen, and S. Lubeck, “Non-equilibrium

phase transitions,” (Springer, 2008).
[27] P. L. Doussal and K. Wiese, arXiv:1410.1930 (2014).
[28] V. Bulatov and A. Argon, Mod. Sim. Mater. Sci. Eng. 2,

167 (1994); M. Falk and J. Langer, Phys. Rev. E 57, 7192
(1998); A. Onuki, Phys. Rev. E 68, 061502 (2003); A. Nico-
las, K. Martens, and J.L. Barrat, arXiv , 1401.6340 (2014).

[29] G. U. Yule, Phil. Trans. Royal Soc. London. Ser. B , 21 (1925),
R. Gibrat, Bull. Statist. Gén. Fr. 19, 469 (1930); H. Kesten, Acta
Math. 131, 207 (1973).

[30] A. Manor and N. M. Shnerb, Phys. Rev. Lett. 103, 030601

(2009).
[31] W. Horsthemke and M. Malek-Mansour, Z. Phys. B 24, 307

(1976); A. Schenzle and H. Brand, Phys. Rev. A 20, 1628
(1979); J. P. Bouchaud and M. Mezard, Physica A 282, 536
(2000).

[32] W. Horsthemke, and R. Lefever, “Noise-Induced Transitions,”
(Springer, 1984).

[33] A. Slimani, P. Fleischmann, and R. Fougères, J. Phys. III
France 2, 933 (1992).

[34] F. Louchet, L. Kubin, and D. Vesely, Phil. Mag. A 39, 433
(1979).

[35] D. Dimiduk, M. Uchic, and T. Parthasarathy, Acta Mat. 53,
4065 (2005).

[36] I. Ryu, W. D. Nix, and W. Cai, Acta Mat. 61, 3233 (2013).
[37] H. Takayasu, A. Sato, and M. Takayasu, Phys. Rev. Lett. 79,

966 (1997).
[38] M. Zaiser, J. Mech. Beh. Mater. 22, 89 (2013).
[39] Ya.B. Zeldovich, S.A. Molchanov, A.A. Ruzmaikin, and

D.D. Sokoloff, Proc. Natl. Acad. Sci. USA 84, 6323 (1987).


