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We show both computationally and analytically that grain boundaries that exhibit shear-coupled
motion become morphologically unstable in solid alloys that phase-separate into coherent domains
of distinct chemical compositions. We carry out simulations of continuum models demonstrating
that this instability is mediated by long-range elastic interaction between compositional domains
and grain boundaries. In addition, we perform a linear stability analysis that predicts the range
of unstable wavelengths in good quantitative agreement with simulations. In nonlinear stages, this
pattern-forming instability leads to the breakup of low-angle grain boundaries, thereby strongly
impacting microstructural evolution in a wide range of phase-separating materials.

Grain boundaries (GBs) can strongly influence the
mechanical and functional behavior of a wide range
of crystalline materials and have been widely studied
for this reason [1, 2]. The last decade, in particular,
has witnessed major progress in understanding and
characterizing the response of GBs to applied stress
[3–15]. A key feature of this response is the coupling
between GB motion normal to the GB plane and a
shear deformation parallel to this plane, character-
ized by the relation

v‖ = βvn (1)

between the GB normal velocity vn and the velocity
v‖ of parallel grain translation where β is a cou-
pling factor that depends on GB bicrystallography
[3, 4]. For low-angle GBs consisting of individual
dislocations, coupling follows from the geometrical
relation between dislocation glide motion and crys-
tal lattice translation [1, 3]. For high-angle GBs with
atomically disordered intergranular structures, the
existence of this relation is less intuitive. However,
remarkably, a wide range of high-angle GBs have
been shown both computationally and experimen-
tally to exhibit coupling [4–11], making it a gen-
eral phenomenon. Coupling has also been shown
to influence the mechanical and coarsening behav-
iors of both small and large assemblies of fine grains
[9, 12, 13, 16, 17]. Those studies have focused pri-
marily on single-phase polycrystalline materials.
In this letter, we highlight the fundamental role of

GB coupling in a different, albeit very common, sit-
uation where stress is generated internally by phase
separation into domain structures of distinct chemi-
cal compositions. Those structures can form by nu-
cleation and growth of a second phase precipitate
inside the matrix of a primary phase [18] or by spin-
odal decomposition into two phases, which has been

widely investigated in various contexts [19–29]. Do-
main formation generates a coherency stress due to
the dependence of the crystal lattice spacing on com-
position. This stress is theoretically understood to
influence spinodal decomposition differently inside
the bulk of a material [19] and near free surfaces
that can relax the coherency stress [27]. However,
how coherency stress affects GB evolution remains
poorly understood fundamentally. Here we demon-
strate that a static planar GB can become spon-
taneously unstable morphologically due to its elas-
tic interaction with compositional domain bound-
aries (DBs) and its coupling behavior that provides a
stress relaxation mechanism. Importantly, the shear
stress that drives GB motion is generated by the
instability itself, as opposed to being externally ap-
plied as in the traditional setting in which coupling
has been primarily studied to date [3–15].
We model the evolution of the concentration field

using standard conserved dynamics

∂tc = M∇2 δF

δc
, (2)

derived from an energy functional

F =

∫

dV

[

fdw (c) +
K

2
|∇c|2 + fel (c, . . . )

]

, (3)

which represents the total free-energy of the system.
The free-energy density is the sum of two parts.
The first chemical part of the Cahn-Hilliard form
[30] is the sum of a symmetric double-well potential
fdw(c) with minima at c+0 and c−0 and a gradient
square term, which together determine the excess
compositional DB free-energy γ. The second part
is the elastic contribution fel (c, . . . ) where ” . . . ”
signifies auxiliary variables used to model elasticity



in two ways. A first approach is a nonlinear elas-
tic model (NLEM) where the auxiliary variables are
components of the strain tensor εij with the form of
fel(c, εij) chosen to be periodic in εxy so as to nat-
urally describe dislocation glide for low-angle GBs
on a simple cubic lattice [31, 32]. This form is also
chosen to describe the interaction between composi-
tion and stress such that, in the bulk crystal away
from dislocations, fel(c, εij) ≈

1
2σij(εij−ε0ijc) where

ε0ij = ε0δij is the dilatational stress-free eigenstrain
that incorporates a linear dependence of the lattice
spacing on composition (Vegard’s law), and elas-
ticity is modeled isotropically with shear modulus
G and Poisson’s ratio ν. In the second approach
based on amplitude equations (AE) [33–35], the aux-
iliary variables are complex amplitudes An of den-
sity waves in an expansion of the crystal density

field n(~r, t) = n0 + δns

∑3
n=1 2ℜ[Ane

i~kn ·~r], where
ℜ denotes the real part. We choose the form of
fel(c, {An}, {A

∗
n}) from Ref. [35] that also reduces

to isotropic elasticity with Vegard’s law in the bulk
and the set of principal reciprocal lattice vectors kn
of the two-dimensional hexagonal lattice. Both mod-
els also describe dislocation glide and hence GB cou-
pling via Eq. (1) with β ≈ θ for small misorientation
[3, 4]. The AE approach has the additional feature
of also describing dislocation climb as in the PFC
model [36]. In both models, the mechanical fields
are relaxed on a much shorter time-scale than the
composition field such that the strain fields and the
GB position are always close to their equilibrium
value on the time scale of the precipitate evolution.
Further details of the models and simulations are
given in [37].

Results of simulations illustrating the instability
of a low-angle symmetric tilt GB for a 7.12◦ mis-
orientation are shown in Fig. 1. These simulations
are performed for a generic set of materials param-
eters (c−0 = 0.05, c+0 = 0.95, G = 40 GPa, ν = 0.25,
ε0 = 4.3 %, and γ = 163 mJ/m2) similar to the
ones used to model phase-separation in Li-ion bat-
tery materials [27, 38]. We focus on a geometry in
which a planar grain boundary is initially centered
inside a lamellar precipitate. This choice of geome-
try is physically motivated by the fact that disloca-
tions act as preferred sites of nucleation [39–41] and
hence GBs naturally seed the formation of lamellar
precipitates of this approximate geometry [20, 42].
Fig. 1 shows that small sinusoidal perturbations of
both the GB and DBs become simultaneously am-
plified with the GB modulation being phase-shifted
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FIG. 1. Color plots of the composition field c at dif-
ferent times increasing from top to bottom in NLEM
(a,b,c,d) and AE (e,f,g,h) simulations illustrating the
destabilization of a low-angle GB (θ = 7.12◦). Simulated
domains with periodic boundary conditions in x have a
size Lx×Ly of 8w×32w (7.8w×11.3w) for NLEM (AE)
where 2w is the initial distance between compositional
DBs (the vertical size of each frame is smaller than Ly).
See online supplemental materials for full movies of these
simulations.

spatially by π/4 from the in-phase modulations of
both DBs. When the amplitude of the GB mod-
ulation exceeds a critical value, the GB breaks up
(Fig. 1.c and 1.g) and dislocations become anchored
at the precipitate interfaces, thereby relaxing the
coherency stress. The last frames of both simula-
tions (Fig. 1.d and 1.h) are similar, presenting zig-
zag shaped precipitates with serrated interfaces due
to the dislocations stress fields. Both simulation
methods yield identical initial destabilization stages,
which are mediated solely by dislocation glide, but
differ in the nonlinear stages after breakup. Without
climb, the NLEM simulation leads to a frustrated
configuration while with climb the AE simulation
further relaxes this configuration by adjustments of
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FIG. 2. Schematic representation of a GB sandwiched
between two perturbed compositional DBs distinguish-
ing four regions (numbered 1 to 4) and displacement
fields used in the stability analysis. The horizontal ar-
rows show the directions of grain translation resulting
from GB coupled motion via Eq. (1), which relaxes the
shear stress induced by the DB perturbation.

dislocation spacings. We note that climb gener-
ally occurs on a much larger timescale than
glide in real systems, while these two mech-
anisms occur on a comparable time scale in
the AE simulations. However, this difference
affects neither the initial stage of the instabil-
ity, which is dominated by glide, nor the final
relaxed equilibrium configuration (Fig. 1.h)
that corresponds to a global free-energy min-
imum.

The instability mechanism can be qualitatively
understood by noting that a small initial sinusoidal
perturbation of DBs of wavelength Λ depicted in
Fig. 2 is stable in the absence of GB inside the pre-
cipitate. This is because this perturbation increases
the total DB energy (= γ× total DB length), but
leaves the elastic energy unchanged since elasticity
is assumed isotropic and the entire solid domain is
periodic in x and infinite in y (Ly ≫ Λ). Therefore,
according to the Bitter-Crum theorem [43, 44], the
elastic energy depends only on the volume of precip-
itate, which is constant by Eq. (2), but is indepen-
dent of its shape. In contrast, with a GB present,
the elastic energy can be decreased by the relax-
ation of the shear stress induced by the DB pertur-
bation along the GB plane (y = 0) via GB coupled
motion. Therefore we expect the existence of a sta-
bility length Λs such that long-wavelength perturba-
tions (Λ > Λs) are amplified by stress relaxation and
short-wavelength perturbations (Λ < Λs) are stabi-
lized by the DB energy γ. This mecanism bears some

similarities with the Asaro-Tiller-Grinfeld (ATG) in-
stability [45, 46] where the destabilization of a film
deposited on a substrate is mediated by the relax-
ation of the normal stresses at the free surface. The
present instability presents however a different ge-
ometry and is mediated by the relaxation of the
shear stress at the GB.

We now carry out a linear stability analysis to
predict Λs and we validate the prediction by simula-
tions. We outline the main steps of the analysis that
treats the GB and DBs as sharp interfaces and pro-
vide details in the supplemental material [37]. We
first calculate the non-perturbed solutions of static
elasticity for planar GB and DBs. Imposing the con-
tinuity of displacements and stress vector compo-
nents Ti = σijnj across the DBs, where n = [nx, ny]
is the interface normal, we find the elastic displace-

ments ū
(m)
x = 0 (m = 1 to 4) and

ū(1)
y (y) =

ε0
1− ν

(

c−(y + w) + c+w
)

,

ū(m)
y (y) =

ε0
1− ν

c+y, m = 2, 3 (4)

ū(4)
y (y) =

ε0
1− ν

(

c−(y − w) + c+w
)

,

where the numbers in superscript refer to different
regions depicted in Fig. 2. The unperturbed chemi-
cal potential µ̄ is constant, and the compositions c̄±

in each domain differ from the minima c±0 of fdw(c)

because of the unperturbed stresses σ̄
(m)
xx and σ̄

(m)
yy

that can be computed from Eq. (4).

Next, we consider the perturbed problem where
the heights of the DBs and the GB perturbations
are slowly varying functions of x denoted by h(x)
and H(x), respectively (Fig. 2). We write accord-
ingly the perturbed chemical potential, displace-
ment fields, and stress fields as µ(m) = µ̄ + µ̃(m),

u
(m)
i = ū

(m)
i +ũ

(m)
i , σ

(m)
ij = σ̄

(m)
ij +σ̃

(m)
ij , respectively,

where quantities with the superscript tilde are small
perturbed quantities. From a sharp-interface-limit
analysis of Eqs. (2)-(3) including stress effects, we
obtain a set of equations and boundary conditions
governing the coupled evolution of the perturbed
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fields and interfaces [37]

∂tµ̃
(m) = D∇2µ̃(m), m = 1 . . . 4, (5)

µ̃DB = −ε0(σ̃xx + σ̃yy) +
γκ

∆c̄
, Jµ̃KGB = 0 (6)

vDB = −
M

∆c̄
J∂yµKDB, (7)

∂jσij = 0, i = x, y, (8)

JuiKDB = 0, JTiKDB = 0, i = x, y, (9)

JuxKGB = βH(x, t), (10)

JuyKGB = 0, JTyKGB = 0. (11)

T (m)
x (x,H(x, t)) = 0, m = 2, 3, (12)

where D = Mf ′′(c̄±) is the solute diffusivity, ∆c̄ =
c̄+ − c̄−, and κ is the DB curvature. In addition,
double square brackets indicate the jump of a quan-
tity across a given interface type (GB or DB) labeled

in subscript (e.g., Jµ̃KGB = µ̃
(3)
GB − µ̃

(2)
GB = 0).

To compute the stability spectrum, we assume a
perturbation of the form h(x, t) = hie

ωkt sin(kx) and
solve equations (5)-(12) to determine the amplifica-
tion rate ωk of perturbations. We first solve the
elastostatic equations (8) subject to known bound-
ary conditions for the displacement and stress fields
at the GB and DBs. Those include, at the DBs,
the continuity of displacements and stress vector (9)
and, at the GB, the jump of tangential displace-
ment (10) that follows from the GB coupling re-
lation (1) (see [10]), the continuity of normal dis-
placement and normal stress (11), and (12) which as-
sumes that the GB adapts its shape instantaneously
via coupling to completely relax the shear stress on
the GB. This assumption is physically justified by
the fact that diffusion-controlled DB motion is typ-
ically much slower than dislocation-glide-mediated
GB motion, also valid for the NLEM and AE simula-
tions. The solutions of the elastostatic equations (8)
for the perturbative displacement fields ũi

(m) have 4
unknown constants in domains (2) and (3), but only
2 unknown constants in domains (1) and (4) due to
the boundary conditions ũi

(1)(−∞) = ũi
(4)(+∞) =

0. The 13 boundary conditions (9)-(12) determine
those 12 unknowns together with the amplitude of
the GB modulation. We obtain

H(x, t) = −4hiε0β
−1∆c̄ e−kweωkt cos(kx), (13)

where the phase shift between the cos(kx) GB mod-
ulation and the sin(kx) DB modulation, observed in
simulations (Fig. 1), is a direct consequence of the
shear stress relaxation on the GB plane.

The stability spectrum is now readily obtained
by using the elastostatic solutions to compute the
stress contribution to the shift of chemical poten-
tial on the two DBs using the local equilibrium
condition (6) evaluated at y = ±w. This yields
µ̃DB(x, y = ±w, t) = ±Γ(k)h(x, t) where

Γ(k) =
4Gε20∆c̄

1− ν

(

ke−2kw − 2d0k
2
)

, (14)

and terms ∼ ke−2kw and ∼ d0k
2 represent the con-

tribution of stresses and DB curvature, respectively;
d0 = γ(1 − ν)/8Gε20∆c̄2 is a microscopic length
that is the ratio of the DB energy and an elastic
energy (e.g., for the parameters of the simulations
d0 = 0.297 nm). Solutions of the diffusion equa-
tion (5) in different regions subject to the conditions
µ̃DB(x, y = ±w, t) = ±Γ(k)h(x, t) are

µ̃(1) = Γ(k)eq(y+w)h(x, t)

µ̃(m) = −Γ(k)
sinh(qy)

sinh(qw)
h(x, t), m = 2, 3 (15)

µ̃(4) = −Γ(k)e−q(y−w)h(x, t)

where q =
√

k2 + ωk/D. Finally, substituting those
solutions into the mass conservation condition (7),
which implies that vint = ∂th = ωkh, and using the
quasi-static approximation q ≈ k valid in the limit
ωk ≪ Dk2 of our simulations, we obtain

ωk =
MΓ(k) k

∆c̄

(

1 + coth(kw)
)

(16)

Confirming the qualitative picture of the instabil-
ity mechanism discussed earlier, long (short) wave-
length perturbations for k < ks (k > ks) are un-
stable (stable). The marginally stable mode corre-
sponding to ωk = 0 can be computed analytically by
setting Γ(ks) = 0, which yields

ks =
2π

Λs

=
1

2w
WL (w/d0) (17)

whereWL is the Lambert function [47]. We compare
in Fig. 3 the analytical predictions of Eq. (16) for ωk,
Eq. (17) for ks, and the fastest growing wavenumber
k0 computed from Eq. (16) by solving dωk/dk = 0,
to results of NLEM and AE simulations, where ωk

was computed by fitting the amplitude of sinusoidal
perturbation of interfaces to growing or decaying ex-
ponential functions of time for different k’s. The
comparison shows an excellent quantitative agree-
ment, thereby validating the analysis. Furthermore,
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in the physically relevant limit where the precipitate
width is much larger than the microscopic capillary
length (w ≫ d0), the asymptotic behavior of the
Lambert function implies that ks ≈

1
2w ln(w/d0). In

addition, k0 is solution of the transcendental equa-
tion k0w (1 + coth(k0w)) = 2, yielding k0 ≈ C/w
where C is a numerical constant (C = 0.797...). This
implies that in this limit the fastest growing wave-
length Λ0 ∼ w while Λs ∼ w/ ln(w/d0) ≪ Λ0. For
w ∼ 100 nm and lower misfit than simulated
here, e.g. ε0 = 0.2%, the above relation yields
the estimate Λs ∼ 1 µm. Since precipitates
typically extend spatially along the GB plane
a distance of the order of few micrometers,
the instability should also appear for small
misfits.

This instability should affect more strongly low
angle GBs because of the inverse relation between
the GB deformation amplitude H and β (Eq. (13)),
causing the breakup of GBs with small β in nonlinear
stages as seen in the simulations (Fig. 1). However,
it will also impact precipitate evolution in the pres-
ence of high-angle GBs that couple as well as GBs

exhibiting mixed coupling and sliding or pure sliding
[4, 9, 10]. This is because the growth rate of insta-
bility (ωk) is independent of β and hence misorien-
tation as validated by simulations (Fig. 3). Hence,
a GB that purely slides will not deform but still re-
lax a shear stress leading to destabilization of DBs.
Even though we highlighted here the instability for
lamellar precipitates, a similar analysis shows that
a GB adjacent to a single DB belonging to a large
precipitate is subject to the same instability.

The present linear stability analysis is a
first step towards understanding the com-
plex interaction between GBs and precipi-
tates formed by nucleation or spinodal de-
composition in a wide range of two-phase ma-
terials. For example, in Ni-Al superalloys,
the nucleation and growth of γ′ GB precipi-
tates have been shown to be responsible for
GB serration [48, 49]. Another example is
the formation of acicular Widmanstätten pre-
cipitates from GBs, common in steel and Ti
alloys. The nucleation and early stages of
growth of those precipitates remain largely
unknown despite recent clarifications of their
stationary growth regime [50]. We expect
that it should be possible to validate directly
experimentally salient features of the insta-
bility mechanism demonstrated in this letter
by precise in-situ observations of precipitate
growth on GBs.

This work was supported by US DOE grants DE-
FG02-07ER46400.

∗ p.geslin@neu.edu
† a.karma@neu.edu

[1] A. Sutton and R. Balluffi, Interfaces in Crystalline
Materials (OUP Oxford, 1995).

[2] Y. Mishin, M. Asta, and J. Li,
Acta Mater. 58, 1117 (2010).

[3] J. Cahn and J. Taylor,
Acta Mater. 52, 4887 (2004).

[4] J. Cahn, Y. Mishin, and A. Suzuki,
Acta Mater. 54, 4953 (2006).

[5] V. Ivanov and Y. Mishin,
Phys. Rev. B 78, 064106 (2008).

[6] T. Gorkaya, D. Molodov, and G. Gottstein,
Acta Mater. 57, 5396 (2009).

[7] D. Olmsted, E. Holm, and S. Foiles,
Acta Mater. 57, 3704 (2009).

[8] D. Molodov, T. Gorkaya, and G. Gottstein,
J. Mater. Sci. 46, 4318 (2011).

5

mailto:p.geslin@neu.edu
mailto:a.karma@neu.edu
http://dx.doi.org/ 10.1016/j.actamat.2009.10.049
http://dx.doi.org/10.1016/j.actamat.2004.02.048
http://dx.doi.org/10.1016/j.actamat.2006.08.004
http://dx.doi.org/10.1103/PhysRevB.78.064106
http://dx.doi.org/10.1016/j.actamat.2009.07.036
http://dx.doi.org/10.1016/j.actamat.2009.04.015
http://dx.doi.org/10.1007/s10853-010-5233-6


[9] Z. Trautt, A. Adland, A. Karma, and Y. Mishin,
Acta Mater. 60, 6528 (2012).

[10] A. Karma, Z. Trautt, and Y. Mishin,
Phys. Rev. Lett. 109, 095501 (2012).

[11] A. Rajabzadeh, F. Mompiou, S. Lartigue-Korinek,
N. Combe, M. Legros, and D. Molodov,
Acta Mater. 77, 223 (2014).

[12] T. Rupert, D. Gianola, Y. Gan, and K. Hemker,
Science 326, 1686 (2009).

[13] J. Sharon, P. Su, F. Prinz, and K. Hemker,
Scripta Mater. 64, 25 (2011).

[14] M. Winning, A. Rollett, G. Gottstein,
D. Srolovitz, A. Lim, and L. Shvindlerman,
Philos. Mag. 90, 3107 (2010).

[15] A. Lim, M. Haataja, W. Cai, and D. Srolovitz,
Acta Mater. 60, 1395 (2012).

[16] K.-A. Wu and P. Voorhees,
Acta Mater. 60, 407 (2012).

[17] A. Adland, Y. Xu, and A. Karma,
Phys. Rev. Lett. 110, 265504 (2013).

[18] D. Porter and K. Easterling, Phase Transformations
in Metals and Alloys, (Revised Reprint) (CRC press,
1992).

[19] J. Cahn, Acta Metall. 9, 795 (1961).
[20] H. Ramanarayan and T. Abinandanan,

Acta Mater. 51, 4761 (2003).
[21] M. Haataja, Phys. Rev. B 69, 1 (2004).
[22] M. Haataja, J. Mahon, N. Provatas, and
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