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We present a quantum Monte Carlo study of the “quantum glass” phase of the 2D Bose-Hubbard
model with random potentials at filling ρ = 1. In the narrow region between the Mott and superfluid
phases the compressibility has the form κ ∼ exp(−b/Tα) + c with α < 1 and c vanishing or very
small. Thus, at T = 0 the system is either incompressible (a Mott glass) or nearly incompressible
(a Mott-glass-like anomalous Bose glass). At stronger disorder, where a glass reappears from the
superfluid, we find a conventional highly compressible Bose glass. On a path connecting these states,
away from the superfluid at larger Hubbard repulsion, a change of the disorder strength by only
10% changes the low-temperature compressibility by more than four orders of magnitude, lending
support to two types of glass states separated by a phase transition or a sharp cross-over.

PACS numbers: 67.85.-d, 67.85.Hj, 64.70.Tg

There are two types of ground states of interacting
lattice bosons in the absence of disorder; the superfluid
(SF) and the Mott-insulator (MI). In the Bose-Hubbard
model (BHM) with repulsive on-site interactions [1, 2]
an MI state has an integer number of particles per site
and there is a gap to states with added or removed parti-
cles. The gapless SF can have any filling fraction. These
phases and the quantum phase transitions between them
are well understood [1–6] and have been realized experi-
mentally with ultracold atoms in optical lattices [7, 8].

If disorder in the form of random site potentials is in-
troduced in the BHM (which can also be accomplished
in optical lattices [9, 10]) a third state appears—an in-
sulating but gapless quantum glass. This state has been
the subject of numerous studies [1–3, 11–27] but many of
its properties are still not well understood. Two types of
glass states are known; the compressible Bose glass (BG)
and the incompressible Mott glass (MG), with the lat-
ter commonly believed to appear only at commensurate
filling fractions in systems with particle-hole symmetry
[18–20, 26–29]. The currently prevailing notion is that
the glass state in the 2D BHM with random potentials is
always of the compressible BG type [20–22, 25].

We here present quantum Monte Carlo (QMC) results
for the two-dimensional (2D) site-disordered BHM, show-
ing that there is actually an extended parameter region
in which the BG is either replaced by an MG or has an
anomalously small (in practice undetectable) compress-
ibility. The system is described by the Hamiltonian

H = −t
∑

〈ij〉

(b+i bj+b+j bi)+
U

2

N∑

i=1

ni(ni−1)+

N∑

i=1

ǫini, (1)

where 〈ij〉 are nearest neighbors on the square lattice, b+i
(bi) are boson creation (destruction) operators, ni = b+i bi

site occupation numbers, and ǫi random potentials uni-
formly distributed in the range [−Λ−µ,Λ−µ] about the
average chemical potential µ. We study the model using
the stochastic series expansion (SSE) QMC method with
directed loop updates [30]. We adjust the chemical po-
tential so that the mean filling-fraction ρ = 〈ni〉 = 1 (to
within < 10−5) when averaged over sites i, disorder real-
izations, quantum and thermal fluctuations. To speed up
the simulations, we impose a cut-off ni ≤ 2 (some times
ni ≤ 3) which does not change the nature of the states.
We study sufficiently large inverse temperatures β = t/T
and lattice sizes L (N = L2 sites) to address the ground
state in the thermodynamic limit.

In the plane (µ/U, t/U), for fixed disorder strength Λ,
there are characteristic “Mott lobes” inside which the fill-
ing is integer, while outside ρ changes with µ, U [2, 3, 11–
18, 21–25]. The lobes are surrounded by a quantum glass
(Griffiths) phase for any Λ > 0 [21–25]. At fixed integer
filling, in the plane (U,Λ) there is a narrow “finger” of the
glass phase intervening between the MI and SF, shrink-
ing to a point Uc at Λ = 0. Most studies have focused on
ρ = 1 and the phase diagram in this case is qualitatively
very similar in two [25] and three [22] dimensions. We
show a schematic phase diagram in Fig. 1.

We focus first on a vertical line in the phase diagram
in Fig. 1 at moderate U . With increasing Λ we can go
from the MI, transition into the glass state in the finger
region, then into the SF, and finally re-enter a glass state
at much larger Λ. We also consider a line to the right
of the SF phase in Fig. 1, studying the evolution of the
glass with increasing disorder when the SF is not crossed
but (as we will show) the properties change dramatically.

We compute two observables characterizing the states:
the compressibility κ and the superfluid stiffness ρs (ob-
tained with SSE using, respectively, particle-number and
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FIG. 1. (Color online) Schematic phase diagram in the plane
of repulsion U and disorder strength Λ of the 2D BHM with
random potentials and filling ρ = 1. We study the system
along the dashed line spanning the Mott insulator (MI), pu-
tative Mott glass (MG), superfluid (SF), and Bose glass (BG).
The boundary or cross-over between the MG and BG is in-
dicated by the thick dashed line, and we also traverse it in
calculations along a vertical (solid) line.

winding number fluctuations [30]). The results were av-
eraged over 500− 1000 realizations of the random poten-
tials. Fig. 2 shows the evolution with Λ of these quanti-
ties for a fixed system size at a low temperature.

Before discussing the results, we recall the reasons for
the existence of a glass phase and its expected nature. In
disordered systems in general, one can expect Griffiths
phases where statistically rare large regions of some phase
inside another phase lead to singularities not present in
the absence of disorder [31–33]. For the integer-ρ BHM
with site disorder, the Griffiths argument states the fol-
lowing [2, 3]: Once the width 2Λ of the disorder distribu-
tion exceeds the Mott gap ∆M , there can be arbitrarily
large domains of SF inside the MI. Until Λ exceeds some
larger critical value these domains are not percolating
through the lattice, and the state is therefore insulating
[34]. In the standard scenario (discussed further in sup-
plementary material), fluctuations of the overall chemical
potential within the SF domains lead to near degenera-
cies of different particle-number sectors and, therefore,
nonzero compressibility (a BG) [21, 22, 25]. With these
notions in mind, we now discuss our results.

Looking first at the superfluid stiffness in Fig. 2, the
sharp increase at Λ ≈ 8 signals the entry into the SF
phase. A finite-size scaling analysis, presented below,
shows that the transition takes place at Λc ≈ 8.3, which
is in reasonable agreement with the result by Söyler et

al., Λc(U = 22) ≈ 7.8 [25]. Here we note that our model
is slightly different, because of the cut-off ni ≤ 2 (while
there was no cut-off in Ref. [25]). When we increase the
cut-off to ni ≤ 3 the critical point moves to a value con-
sistent with that of Söyler et al. Increasing Λ further in
Fig. 2, the superfluid stiffness eventually again decreases
to zero at Λ ≈ 30. This transition point is much smaller
than that of Söyler et al., Λc ≈ 70, as would be expected
in this region where the probability of site occupations
beyond our cut-off is substantial. Since the cut-off does
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FIG. 2. (Color online) Compressibility and superfluid stiff-
ness vs disorder strength in a 16 × 16 system at β = 8. At
U = 22 (main graph), the system evolves from glass to SF
and back to glass. Results for U = 60 are shown in the inset.
Here the system stays in the glass phase but the compressibil-
ity changes rapidly around Λ = 30 (far away from the Mott
boundary at Λ ≈ 24).

not alter any symmetries of the system there is no reason
to believe that it will affect our conclusions regarding the
nature of the phases and transitions.
Turning to the compressibility, it is substantial in the

SF phase and when the glass is re-entered at large Λ.
However, it is very small below the SF transition, not
only in the Mott phase (which extends up to Λ ≈ 4.3
in our system, based on the Mott gap of the clean MI
as discussed in supplementary material) but also in the
region Λ ≈ 5 − 7, where the system is in a glass phase.
The L → ∞ compressibility as a function of temperature
is shown in Fig. 3. At Λ = 0 and 3, we observe the
normal exponential decay with β expected in the gapped
MI phase. At Λ = 6 and 7 we instead find the form

κ ∼ exp(−b/Tα) + c, (2)

where α < 1 and c = 0 (to within statistical errors).
This form has previously been found in random quan-
tum spin systems [29, 35], where κ corresponds to the
magnetic susceptibility and one expects it to vanish as
T → 0 because of spin-inversion symmetry (correspond-
ing to particle-hole symmetry for bosons). Such an in-
compressible and insulating quantum glass is called an
MG [13] and has also been shown to exist in variants
of the 2D random BHM where particle-hole symmetry is
explicitly built in [27, 28] (and Ref. [13] argued for its pos-
sible existence also more generally). To our knowledge,
κ(T ) was not computed for these systems and there is
no theoretical prediction for its form. In the presence of
random potentials there is no explicit particle-hole sym-
metry (but in principle there could be emergent particle-
hole symmetry, as in the clean BHM at the tips of the
Mott lobes [2]). It had been argued that the glass state
of the BHM should then always be a clearly compressible
BG [21, 22, 25], contrary to our findings.
While c = 0 in (2) may not hold strictly, the very
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FIG. 3. (Color online) Compressibility versus inverse tem-
perature for U = 22 and different strengths Λ of the disorder.
The lattice size L = 32 in all cases, which is sufficient to elim-
inate finite-size effects at these temperatures. The curves are
fits to the form (2) with α = 1 for Λ = 0, 3 (MI state) and
α = 0.78 and 0.53 for Λ = 6 and 7, respectively (MG state).
For Λ = 9 (SF state) κ is essentially constant.

small κ(T → 0) at the very least shows that the system
is an anomalous BG, with exceedingly small (essentially
undetectable) compressibility in a large part of the phase
diagram. We here use the term MG because, as we will
argue below, even if c > 0 but small the physics behind
the anomalous BG is very similar to a true MG.

The form (2) of κ(T ) with c = 0 can be understood
heuristically as follows: Consider non-Mott domains be-
low the percolation point inside an MI. At temperature T
there is some size m such that for T . m−a all domains
of size s < m are effectively in their ground states and do
not contribute to the compressibility. The exponent a de-
pends on the low-energy level spectrum of the domains,
which should be related to the fractal nature of the do-
mains. Domains with s > m should contribute essentially
independently of T and s. The probability of a site be-
longing to a domain of size s > m is ∝ exp(−dmb), where
b can in principle be computed using classical percolation
theory [36] (but may be different in a quantum system).
In terms of the unknown exponents a and b the compress-
ibility due to non-Mott domains is κ ∝ exp(−dT−b/a),
which is Eq. (2) with α = b/a.

The above scenario neglects the arbitrarily close degen-
eracy of different particle-number sectors due to fluctu-
ations of the average chemical potential of the domains,
which lead to κ(T = 0) > 0 in the standard BG sce-
nario (where the non-Mott domains are superfluid). How
can these degeneracies be avoided? By studying isolated
domains with a different chemical potential embedded
in an MI, we have found (see supplementary metarial)
that there are finite-size effects due to which particle-
number degeneracies in the region of interest here only
occur when the domains are large (with the critical size
diverging at the Mott phase boundary). All domains be-
low a critical size (which depends on the domain shape)

have vanishing T → 0 compressibility and should not be
regarded as superfluid—they are insulating because of fi-
nite size and effectively possess particle-hole symmetry at
low energy. One still expects rare domains exceeding the
critical size to contribute when T → 0. However, we will
show below that typical large domains should also have
an altered spectral structure due to quantum-criticality
when the SF boundary is approached. Thus, both small
and large typical domains (the latter of which are frac-
tals) may not contribute to the T = 0 compressibility.

Within the standard scenario, there should still ex-
ist rare large compressible domains in the Mott back-
ground, but in reality the domains are never completely
isolated from each other and the picture of degenerate
single-domain levels may ultimately not be valid away
from the atomic limit (large U and Λ). Whether or not
strictly c = 0 in Eq. (2), in practice the compressibility is
undetectably small and the system is effectively an MG
in the finger region (and, as we will see, also at larger U
in a substantial region along the Mott boundary).

We do find a compressible BG in the re-entrance re-
gion at large Λ (above the SF in Fig. 1), as illustrated
by results at Λ = 60 in Fig. 4. There should then be a
phase transition or a cross-over separating the MG and
the BG phases. We have identified a dramatic variation
in the compressibility along a vertical line at U = 60. As
shown in the inset of Fig. 2, at β = 8, κ increases rapidly
with Λ between 28 to 31 (which is far away from the
Mott boundary at Λ ≈ 24), before flattening out. The
enhancement is more than four orders of magnitude, κ
being very small before the sharp increase. We do not
find any significant finite-size effects in this region for
L > 8, and also the behavior does not change substan-
tially upon further increasing β (and the ni cut-off also
does not play a role here). The behavior therefore indi-
cates a sharp cross over, not a phase transition, though in
principle κ could still vanish exponentially at some point
away from the Mott boundary. As a function of U , the
cross-over most likely occurs on a line extending out from
the right-side SF tip (“nose”) in Fig. 1 and can be inter-
preted as a change from a state where typical non-Mott
domains are not superfluid to a BG where the domains
are superfluid but do not form a coherent global state.

We next study the critical T = 0 compressibility at the
lower glass–SF boundary, where κ ∼ (Λ−Λc)

ν(2−z) is ex-
pected in the thermodynamic limit. If z = 2, as is often
assumed [21, 22, 25], κ > 0 is non-singular at the transi-
tion. One would then expect κ > 0 also close to the tran-
sition inside the glass [18]. Then the only plausible sce-
nario is that κ > 0 throughout the glass phase (and there
is no a priori reason to expect a very small κ). A key
question then is whether z = 2 or z < 2. In the former
case divergent SF clusters in the MI background close
to the percolation point would be compressible, while in
the latter case they should be incompressible. There are
arguments for z = 2 at the glass-SF transition [2] but
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FIG. 4. (Color online) Compressibility versus inverse temper-
ature for systems with U = 22, Λ = 60. Error bars are only
shown for L = 16 (being much smaller for L = 8, 12).

no rigorous proofs. Some numerical works on models re-
lated to the BHM have in fact pointed to z < 2 [37, 38].
Calculations suggesting z = 2 are affected by large un-
certainties [11, 17, 18] and are also consistent with z < 2.
We extract z using the following finite-size scaling be-

haviors [2] expected exactly at the critical point:

κ(L,Λc) ∝ Lz−d, ρs(L,Λc) ∝ L−z. (3)

In Fig. 5 we show results using different system sizes and
scaling the inverse temperature according to β = Lz with
three choices of z [39]. Based on Eqs. (3) we expect curves
of κLd−z for different L to cross each other at a point
(asymptotically for large L) if the correct value of z is
used, and a similar behavior of ρsL

z. It should be noted,
however, that there are crossings even if a wrong z is
used, but the vertical crossing value (e.g., for system sizes
L and 2L) will then drift up or down instead of converging
to a constant. One can also expect larger corrections to
the horizontal crossing value if an incorrect z is used.
The compressibility crossing points in Fig. 5 are very
sensitive to the value of z, while the stiffness crossings are
more stationary. Such behavior has also been observed in
certain clean bosonic systems [40]. Based on our result,
z should be between 1.5 and 1.75, which implies that the
percolating SF cluster is incompressible.
In the above analysis it has been implicitly assumed

that any non-singular contributions to κ can be ne-
glected. If regular contributions arise from SF domains
larger than a critical size, then we would expect these
contributions to increase with L and, by Eq. (3), this
would lead to an apparent enhancement of z. Since we
instead find a reduction from z = 2 it appears that non-
singular background contributions are not responsible for
this effect and z < 2 should be a robust result. This is
also consitent with the drop of κ seen in Fig. 2 when ap-
proaching the lower SF–glass transition from the right,
while at the higher transition point there are no strong
variations, suggesting z = 2 there.
Along with a large critical size needed for non-Mott do-

mains to become superfluid, even far away from the Mott
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FIG. 5. (Color online) Finite-size scaling of the superfluid
stiffness (left column) and the compressibility (right column)
for U/t = 22 using three different values of the dynamic ex-
ponent; z = 2, 1.75, and 1.5 (top to bottom) [39].

boundary, a dynamic exponent z < 2 provides an expla-
nation for an anomalously small, or possibly vanishing,
T = 0 compressibility in the finger region of the phase
diagram between the Mott and SF phases. The sharp
cross-over from anomalously small to normal compress-
ibility away from the SF phase at larger U also shows
that there are two distinct types of glass phases in the
BHM, one being either an MG or an anomalous BG with
physics similar to an MG, and the other one a standard
BG with isolated non-coherent superfluid domains.
The scenario discussed here applies only to integer fill-

ing fractions, since a compressible state follows trivially
from a non-constant ρ(U,Λ) for incommensurable sys-
tems. Differences between integer and non-integer filling
were found in a recent renormalization-group study [23],
although it is not clear whether the state is the MG or
anomalous BG identified in our work.
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[23] F. Krüger, S. Hong, and P. Phillips, Phys. Rev. B 84,
115118 (2011).

[24] F. Lin, E. S. Sørensen, and D. M. Ceperley, Phys. Rev.
B 84, 094507 (2011).
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