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We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The syn-

chronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical cavity.

We show that, in principle, with this synchronized system it is possible to observe Ramsey fringes indefinitely,

even in the presence of spontaneous emission and other sources of individual-atom dephasing. This could have

important consequences for atomic clocks and a wide range of precision metrology applications.
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The precision currently achievable by atomic clocks is re-

markable; for example, the accuracy and instability of state-

of-the-art optical lattice clocks lies in the realm of 10−18 [1, 2].

The pursuit of even more stability is motivated by the potential

benefit to a wide range of fields in the physical and natural sci-

ences, facilitating progress in diverse areas such as; redefini-

tion of the system of physical units in terms of time [3], clock-

based geodesy [4], gravitational wave detection [5], and tests

of fundamental physics and cosmology [6, 7]. Atomic clock

developments have also enabled spin-off applications, includ-

ing precision measurements [8], quantum state control [9],

and investigations of quantum many-body physics [10, 11].

Atomic clocks typically operate using the method of Ram-

sey Spectroscopy (RS) [12]. As shown in Fig. 1, RS consists

of three steps; (i) initial preparation of a coherent superposi-

tion between two quantum states, (ii) accumulation of a phase

difference between the atoms and a local oscillator reference

over an interrogation time T , and (iii) mapping of the phase

difference to a population readout. Conventional RS is based

on independent-atom physics, with the role of a large number

of atoms entering only through improving the signal by sta-

tistical averaging. The performance of RS is limited by the

atomic coherence time, which causes decay of the fringe visi-

bility as a function of T . Due to this decay, an optimal strategy

is typically used that involves setting T to be of the order of

the coherence time, and filling up the total measurement in-

terval τ by repeated RS cycles [13]. This gives an uncertainty

in the frequency difference between the atoms and local oscil-

lator that scales as 1/(
√

Nτ), with the
√

N coming from the

quantum projection noise at each readout. This scaling τ−1/2

is much worse than the fundamental Fourier limit τ−1.

There are two paths to improving on the standard limit

for RS, apart from simply increasing N. Firstly, the pro-

jection noise can be reduced by preparing spin-squeezed

states [14, 15]. Pursuing this direction, there have been nu-

merous efforts to produce spin-squeezing in various physi-

cal situations [16–23]. It is worth pointing out that entan-

gled states are often fragile and sensitive to decoherence pro-

cesses, which may limit their potential for providing signifi-

cant improvements to the sensitivity [24, 25]. Secondly, one

can increase the coherence time of atoms. One approach has

been to increase the dephasing time of magnetically and op-

tically trapped atomic ensembles by spin self-rephasing in-

duced by the exchange interaction between two identical par-

ticles [26, 27]. In recent lattice clock experiments [2], the

atomic dephasing time T2 has been pushed to ∼1s. Even if

further technical improvements are made, there is a funda-

mental upper limit to the atomic coherence time provided by

the lifetime, T1, of the long-lived excited clock state (∼160s

for 87Sr) [28].

In this paper, we propose an approach to RS that is more

robust against decoherence. Our idea is to use atoms that reso-

nantly exchange photons with a heavily damped single-mode

of an optical cavity during the interrogation time of the RS

sequence [see Fig. 1(a)]. Due to the cavity damping, it is nec-

essary to continuously replenish the energy by incoherently

repumping the atoms. One may have thought that this would

simply give rise to additional decoherence channels, on top of

the usual T1 and T2 processes, and cause the RS fringe vis-

ibility to decay more rapidly. This is not the case, since the

cavity-mediated dissipative coupling between atoms acts to

synchronize their phases. We show that the coherence time

of the synchronized ensemble does not depend on individual-

atom dephasing, as represented by T1 and T2. The synchro-

Interrogation time T
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FIG. 1: (color online) (a) Conditional Ramsey spectroscopy where

synchronized atoms are coupled collectively to a cavity and pumped

individually with incoherent rate w during the interrogation time.

(b) Ramsey sequence showing initial preparation in state |g〉 (pseu-

dospins pointing down to the south pole of the Bloch sphere), the ro-

tation to the equator by illuminating the atoms with a coherent near-

resonant π/2 laser pulse, precession around the equator, and second

π/2 x-axis rotation, after which the z-axis projection carries informa-

tion about the cosine of the accumulated phase.
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nized atoms instead undergo only a collective quantum phase

diffusion. However, the collective phase can be continuously

monitored by observing the cavity output field. Consequently,

this system provides a kind of conditional RS, conditioned on

the cavity output, where fringes of high visibility may be ob-

served indefinitely.

The atom-cavity system during the interrogation time is de-

scribed by the Hamiltonian

Ĥ =
~∆ν

2

N
∑

j=1

σ̂z
j
+
~g

2

N
∑

j=1

(â†σ̂−j + âσ̂+j ), (1)

where ∆ν is the frequency difference between the atoms and

local oscillator and g is the coupling strength between a single

atom and the cavity mode. We introduce the bosonic anni-

hilation and creation operators, â and â†, for cavity photons,

and the j-th atom Pauli operators, σ̂z
j

and σ̂−
j
= (σ̂+

j
)†, for the

pseudospins representing the two-level system. For simplic-

ity, g is assumed to be identical for all atoms. In principle, this

could be achieved by trapping the atoms at the antinodes of the

cavity mode by an optical lattice. A less ideal spatial config-

uration only leads to a reduced effective atom number, which

has no impact on the basic conclusions of this paper [29].

In the presence of decoherence, the evolution is described

by the usual Born-Markov quantum master equation for the

reduced atom-cavity density matrix ρ,

dρ

dt
=

1

i~
[Ĥ, ρ]+κL[â]ρ+

N
∑

j=1

(

wL[σ̂+j ]+
1

T1

L[σ̂−j ]+
1

4T2

L[σ̂z
j
]
)

ρ

(2)

whereL[Ô]ρ = (2ÔρÔ†− Ô†Ôρ−ρÔ†Ô)/2 denotes the Lind-

blad superoperator. The cavity decays with rate κ and the in-

coherent repumping is at rate w. Conventional RS is recovered

by setting g = 0 and w = 0, with the result that the RS fringe

visibility then decays exponentially with the single-atom de-

coherence rate ΓS = (T−1
1
+ T−1

2
)/2 [see Fig. 2(a)].

We solve for the dynamics in an extreme regime of bad-

cavity quantum electrodynamics [31–35], where the cavity

decay rate is much greater than any time scale associated with

the atomic dynamics [36]. This allows an approximation to

be made where the cavity field is entirely eliminated from the

equations of motion [37]. The role of the cavity field then is to

simply provide a source for a dissipative collective coupling

for the atoms. The effective evolution is given by a quantum

master equation containing only atoms;

dρ

dt
= − i

2
∆ν

N
∑

j=1

[σ̂z
j
, ρ] + ΓCL[Ĵ−]ρ

+

N
∑

j=1

(

wL[σ̂+j ] +
1

T1

L[σ̂−j ] +
1

4T2

L[σ̂z
j
]
)

ρ, (3)

where Ĵ− =
∑N

j=1 σ̂
−
j

is the collective decay operator and

ΓC = C/T1 is the collective decay rate, written in terms of

the cooperativity parameter of the cavity C [38]. The collec-

tive decay rate can be taken to be small, i.e. ΓC ≪ ΓS , because
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FIG. 2: (color online) Calculations of Eq. (3) with N = 250,

ΓC = 0.2/T1, T2 = T1, and w = NΓC/2. (a) Ramsey fringes with

synchronized atoms (red solid line) versus T . Conventional Ram-

sey fringes (blue dashed line) for the same T1 and T2. (b) During

the interrogation time, the atomic inversion 〈σ̂z
j
〉 (blue dashed line),

spin-spin correlation 〈σ̂+j σ̂−k 〉 (red solid line), 〈σ̂+j σ̂−k 〉- 〈σ̂+j 〉〈σ̂−k 〉 (red

dotdashed line) and 〈σ̂+
j
σ̂z

k
〉/(〈σ̂+

j
〉〈σ̂z

k
〉) (green dotted line).

C is a dimensionless geometric cavity parameter that for real

systems is typically much less than 1. For a current generation
87Sr optical clock experiment [2], ΓS ∼ 1s−1, while ΓC can be

as small as 10−3s−1 for C ≈ 0.16.

It is extremely difficult to find numerical solutions to Eq. (3)

for an appreciable number of atoms without further approxi-

mation due to the exponential scaling, 4N , of the dimensional-

ity of the Liouvillian space. Fortunately, an underlying SU(4)

symmetry of the Liouvillian superoperators in Eq. (3) was de-

veloped recently, which reduces the complexity of the prob-

lem to N3 [39]. This enables us to obtain numerical solutions

up to a few hundred pseudospins.

Fig. 2(a) shows numerical calculations of RS fringes with

synchronized atoms. The solution of the quantum master

equation represents the ensemble average of many experi-

mental trials. A remarkable feature is that the fringe visi-

bility decays much slower than that of conventional RS un-

der the same T1 and T2 decoherences, demonstrating the ro-

bustness to individual-atom decoherence. When compared to

conventional RS with independent atoms, the principal differ-

ence here is that strong spin-spin correlations between atoms

〈σ̂+
j
σ̂−

k
〉 ( j , k) develop due to the dissipative coupling, as

shown in Fig. 2(b). This feature is a characteristic of phase-

locking [31, 40]. After a brief initial transient evolution, the

fringe fits well to an exponentially decaying sine function, i.e.,

Ae−λt sin∆νt, where λ is the decay rate of the fringe visibility

and A is an amplitude (we derive this behavior later.)

Intuitively, one may expect that in order to effectively

phase-lock the atoms, it should be necessary for the dissi-
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pative coupling that provides rephasing to dominate over the

‘random-walk’ due to quantum noises that destroy phase cor-

relations. Because of the all-to-all nature of the interaction

of atoms through the cavity mode, the dissipative coupling

strength scales with N and is given by NΓC/2 [41]. We show

the effect of this in the inset of Fig. 3. For small atom number,

the individual quantum noises dominate over the rephasing,

and the fringe envelope decays more rapidly than in conven-

tional RS, i.e. λ > ΓS . As N increases, the dissipative cou-

pling increases, and we reach the regime λ < ΓS . For large

atom number, we find λ approaches ΓC . The ΓC limit arises

from quantum fluctuations associated with the collective pseu-

dospin decay through the cavity.

There are three timescales one should consider. At short

times, quantum correlations develop as the atoms phase-lock.

This can be seen in the initial transient part of the evolution

of the observables shown in Fig. 2(b), and is characterized

by the timescale w−1. This phase-locking time should be less

than the atomic coherence time Γ−1
S

in order to observe high-

visibility fringes. There is also a long timescale provided by

the collective decay time Γ−1
C

. It is important to operate in the

parameter regime in which w≫ ΓS ≫ ΓC .

A valid question to consider is: Why does the large incoher-

ent repumping rate w not destroy the synchronization? Some-

what paradoxically, repumping is crucial for building up phase

correlations among atoms. In Fig. 3, we show the effect of w

on the decay rates of the Ramsey fringe visibility λ. When

the repumping rate is too small or too large we find λ > ΓS ,

so that the system performs worse than conventional RS. This

can be understood since an effective synchronization model

for Eq. (3) can be derived under the mean field approxima-

tion [29]. By parameterizing 〈σ̂+
j
〉 as α je

−iφ j for each atom j,

we obtain the equation of motion for the phases φ j,

dφ j

dt
= −∆ν + ΓC

2

〈σ̂z
j
〉
α j

∑

m

αm sin(φm − φ j) . (4)

This has the form of a Kuramoto model [42, 43] that describes

the synchronization of phase oscillators. The model shows
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FIG. 3: (color online) The decay rate of the visibility of Ramsey

fringes at ΓC = 0.2/T1 and T2 = T1 as a function of repumping

for N = 200 and as a function of N for w = NΓC/2 (Inset). The

dots are numerical solutions of Eq. (3), and the solid blue line is the

semiclassical approximation for comparison.

that population inversion of the pseudospins is a necessary

condition for phase synchronization. The repumping strength

must be large enough that there is more probability for the

atoms to be in the excited state than in the ground state. How-

ever, if the repumping rate is too large, the associated quan-

tum noise destroys the phase correlations before they can de-

velop. As has also been seen in the case of the superradiant

laser [31, 34], the most coherent system is realized at an inter-

mediate pump strength.

An accurate semiclassical approximation may be developed

that is valid in the case of large numbers of atoms. Taking

advantage of the fact that all expectation values are symmetric

with respect to atom exchange, we find from Eq. (3),

d

dt
〈σ̂+j 〉 = i∆ν〈σ̂+j 〉 −

Γt

2
〈σ̂+j 〉 +

ΓC

2
(N − 1)〈σ̂+j σ̂z

k
〉, (5)

where j , k and Γt = 2ΓS + w + ΓC is the total decay rate

of the atomic coherence. We first point out that instead of

calculating the population difference measured at the end of

the RS sequence, it is equivalent to calculate 2Im[〈σ̂+
j
〉] just

before the second π/2 pulse. The decay rate of 〈σ̂+
j
〉 during

the interrogation time T is therefore the same as that of the

Ramsey fringe visibility. As seen in Fig. 2(b), the quanti-

ties α(t) = 〈σ̂+
j
σ̂z

k
〉/(〈σ̂+

j
〉〈σ̂z

k
〉) and 〈σ̂z

j
(t)〉 rapidly approach

steady state on the short timescale of the phase-locking, w−1.

We therefore substitute the steady-state values αss and 〈σ̂z
j
〉ss

into Eq. (5). This produces the exponentially decaying sine

function solution noted earlier with decay constant

λ =
1

2

[

Γt − (N − 1)ΓCαss〈σ̂z
j
〉ss

]

. (6)

Furthermore αss ≈ 1, see Fig. 2(b). At the level of mean-

field [29], 〈σ̂z
j
〉ss ≈ Γt/(N−1)Γc giving the trivial result λ = 0.

It is therefore necessary to develop a semiclassical expres-

sion for 〈σ̂z
j
〉ss that goes beyond mean-field, as shown in [29].

Fig. 3 compares λ from the semiclassical expression with the

quantum master equation solution, showing good agreement

over the full range of pumping rates.

All of these results consider the ensemble that is formed

from a statistical average of independent trials. The decay of

the fringe visibility is really due to the averaging itself, as we

will now see. In each trial, the quantum phase is diffusing as

a function of interrogation time. This means that as time goes

on, different trials begin to add out of phase, and so the fringe

visibility decays.

This motivates us to consider the properties of a single

experimental run, where the behavior is qualitatively differ-

ent. Although in a single run, the fringe undergoes a quan-

tum phase diffusion, it does so with non-decaying visibility.

This quantum phase diffusion has a simple physical interpre-

tation in terms of quantum measurements. Since the cavity

field follows the atomic coherence through adiabatic elimina-

tion, measuring the phase of the cavity output field, for exam-

ple by homodyne measurement, is equivalent to a continuous

non-destructive measurement on which information is gath-

ered about the evolving collective atomic phase. The back-
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FIG. 4: (color online) Quantum state diffusion calculations of con-

ditional Ramsey fringes subject to continuous homodyne measure-

ment of the cavity output field for N = 10 and w = NΓC/2. The

blue dashed lines are the ensemble average for reference. (a) A typ-

ical Ramsey fringe for a single experimental trial (red solid line).

(b) Histograms are the statistics of the positions of zero crossings of

each fringe for 4000 trials. The blue solid lines are fitted Gaussian

distributions with variance of TΓC centered on the zero crossing of

the ensemble average.

action of this measurement introduces fluctuations that cause

the collective atomic phase to undergo a random-walk [35].

We demonstrate this in Fig. 4(a), where we show a typ-

ical Ramsey fringe for a single experimental trial by using

the method of quantum state diffusion [44, 45] to yield condi-

tional evolution of the system subject to continuous measure-

ments of the cavity field. The phase diffusion of the synchro-

nized atoms is evident from the phase fluctuation of the Ram-

sey fringe. To find the phase diffusion coefficient, Fig. 4(b)

shows the statistics of the positions of the zero crossings of

the fringe for 4000 trials. They fit well to Gaussian distribu-

tions with variance given by TΓC , clearly demonstrating that it

is a diffusion process and that the diffusion coefficient is
√
ΓC .

Note that this is the same mechanism that also sets the quan-

tum limited linewidth in a superradiant laser to be ΓC [31],

observed here in the time rather than frequency domain.

We should emphasize that the quantum phase diffusion

does not itself provide a fundamental limit to the perfor-

mance of conditional RS, since the collective atomic phase

can be tracked by measuring the light output from the cavity.

This opens up the exciting possibility of observing conditional

Ramsey fringes (meaning an experimental trial conditioned on

the measurement record of the output field) of near maximum

fringe visibility for as long as the atoms can be stored, even

in the presence of T1 and T2 processes. Of course a practi-

cal limit is also set by the length of time for which the local

oscillator can remain phase coherent. In principle, if experi-

mentally achieved, this work could lead to dramatic advances

in the sensitivity of RS, since the entire measurement interval

could then be used to determine frequency at the Fourier limit.

In conclusion, we have proposed and analyzed RS with syn-

chronized atoms where we have shown that the interrogation

time can be extended beyond the T1 and T2 times that limit

conventional RS. Due to the rephasing effect, we have demon-

strated that synchronized atoms are potentially robust against

local decoherence. However, we have also found that the

synchronization process itself intrinsically generates quantum

phase diffusion through the quantum fluctuations that arise

due to the cavity dissipation. This implies that the quantum

phase of the atomic ensemble relative to the local oscillator

must be tracked in real time by observation of the output light

from the cavity in order to achieve the optimal precision for

the RS with synchronized atoms.
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