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Conventional wisdom dictates that to image the position of fluorescent atoms or molecules, one
should stimulate as much emission and collect as many photons as possible. That is, in this classical
case, it has always been assumed that the coherence time of the system should be made short, and
that the statistical scaling ∼ 1/

√
t defines the resolution limit for imaging time t. However, here we

show in contrast that given the same resources, a long coherence time permits a higher resolution
image. In this quantum regime, we give a procedure for determining the position of a single two-level
system, and demonstrate that the standard errors of our position estimates scale at the Heisenberg
limit as ∼ 1/t, a quadratic, and notably optimal, improvement over the classical case.

Precisely imaging the location of one or more point
objects is a problem ubiquitous in science and technol-
ogy. While the resolution of an image is typically defined
through the diffraction limit as the wavelength ∼ λ of
illuminating light, the final estimate of object position
instead exhibits a shot-noise limited standard deviation
σ that scales with the number of scattered photons de-
tected – a consequence of the law of large numbers. Thus,
in the absence of environmental noise, it is the time al-
lowed for accumulating statistics that appears to limit
precise position measurements.
Surprisingly, when the objects to be imaged are imbued

with quantum properties, these well-known classical lim-
its on resolution and standard deviation can be improved.
Impressive sub-optical resolutions of ∼ λ

10 [1, 2] are ob-
tainable by advanced microscopy [2] protocols such as
STED [3], RESOLFT [4], STORM [5], and PALM [6].
Each in its own way exploits the coherence of a quantum
object by storing its position xi in its quantum state
|ψ〉 over an extended period of time. Ultimately how-
ever, even for state-of-art, it is still the statistical scaling
σ ∼ 1√

t
that a position estimate taking time t.

Yet, fundamentally, coherent quantum objects allow
for a standard deviation scaling quadratically better, as
σ ∼ 1

t . This so-called Heisenberg limit [7] is a fundamen-
tal restriction of nature that bounds the standard devi-
ation of a single-shot phase estimate of |ψ〉, i.e. given
a single copy of |ψ〉, to ∼ 1

t , a bound attainable in the
regime of long coherence [8–10].
How then can quantum coherence be fully exploited to

estimate a quantum object’s position? An apparent con-
tradiction arises since photon scattering rates approach
zero in the limit of infinite coherence, in contrast to tradi-
tional imaging, where maximizing scattering is desirable.
A similar problem arises in magnetic resonance imaging,
but is there resolved by a two-step process: map xi coher-
ently to |ψ〉, then read out |ψ〉 using just a few photons.
However, current approaches have two flaws. First, the
mapping is typically ambiguous (Fig. 1a). Due to the pe-
riodicity of quantum phases, multiple xi can be encoded
into the same observable of |ψ〉 – often the transition
probability s(xi). Second, the mapping resolution r –
the length scale over which s(xi) varies – cannot be im-

FIG. 1: a) Map from position xi to transition probability
s(xi). This is ideally unambiguous with a single narrow peak
of width r (solid). The ambiguous map has multiple peaks
(dashed). b) Scaling of r with the number of coherent drive
pulses L. The optimal scaling is ∼ 1/L (dashed, thin), but

often suboptimal ∼ 1/
√
L for unambiguous maps (thick). c)

Procedure outline for estimating xi with error σ scaling at
the Heisenberg limit. This combines an optimal r-scaling un-
ambiguous map with measurement in a logarithmic search.

proved arbitrarily in an effective manner. Doing so, with
say a long sequence of L coherent excitations, either in-
troduces more ambiguity or requires time that does not
perform better than the statistical scaling (Fig. 1b). Ap-
proaches that estimate position with Heisenberg-limited
scaling must overcome these two challenges.

Such well-known difficulties are apparent when using
a spatially varying coherent drive, e.g. a gaussian beam,
that produces excitations varying over space ∼ λ. Due
to projection noise [11], s(xi) can only be estimated with
error scaling ∼ 1√

t
. Thus for any given r, a standard

deviation σ ∼ r√
t
results. Working around projection

noise and improving these resolutions is the focus of much
work in magnetic resonance as well as quantum informa-
tion science with trapped ions [12–17]. Unfortunately,
state-of-art [13, 18, 19] excitation sequences, or pulse
sequences, that produce a single unambiguous peak are
sub-optimal – they offer a resolution of r ∼ λ√

L
(Fig. 1);

no better than the statistical scaling.

We present a new procedure that images quantum ob-
jects with standard deviation σ ∼ 1

t , using a two-step
imaging process which unambiguously maps spatial po-
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sition to quantum state, allowing for readout with imag-
ing resolution that scales as the optimum achievable by
the Heisenberg limit. Like prior art, a pulse sequence is
employed to implement the unambiguous mapping. In
contrast though, we develop new sequences with the op-
timum resolution scaling r ∼ 1

L (Fig. 1). Due to the
narrowness of r, measuring the quantum state is much
more likely to tell one where the object is not, rather
than where it is located. Thus, our optimal unambigu-
ous mapping alone is insufficient for achieving σ ∼ 1

t .
This issue is resolved using a logarithmic search, mod-
eled after quantum phase estimation [8–10], that applies
our mapping several times with varying resolutions. This
logical flow (Fig. 1c) leads to an imaging algorithm with
optimal scaling σ ∼ 1

t . From the classical perspective
that imaging should be done with short coherence times
and maximal photon scattering, our algorithm is a com-
plete surprise. In fact, our results imply that the best
method for imaging quantum objects is to collect very
few photons from a source that can be coherently con-
trolled.

We begin by defining the resources required for imag-
ing the position of a quantum object in one dimension.
The action of pulse sequences on this system is briefly
reviewed to demonstrate the mapping of spatial posi-
tion to transition probability. This allows us to define
the unambiguity and optimality criteria for a transition
probability. We show that our new pulse sequences have
both properties. These properties enable an efficient log-
arithmic search for system position, solving the projec-
tion noise issue. We then discuss estimates of real-world
performance, generalizations to higher dimensions and
multiple objects.

Consider a quantum two-level system in state |ψ〉 at an
unknown position xi contained in a known interval I of
width / λ. Measurements in the {|0〉, |1〉} basis are as-
sumed. Provided is a coherent drive, over which we have
phase φ and duration τ control, with a known spatially
varying Rabi frequency Ω(x), where x = xi − xc can be
translated by arbitrary distance xc. With this coherent

drive, a unitary rotation Uφ[θ] = e−i θ
2
[cos (φ)X̂+sin (φ)Ŷ ],

where X̂, Ŷ are Pauli matrices, that traverses angle
θ(x) = Ω(x)τ can be applied. Combined with mea-
surements, this allows us to prepare |0〉 by repeated pro-
jection. Chaining L such discrete rotations generates a
pulse sequence S = UφL

[θ]...Uφ1
[θ] ≡ (φ1, .., φL). When

applied to |0〉, this results in the state S|0〉 and the tran-
sition probability p(θ) = |〈1|S|0〉|2 in θ coordinates. As θ
depends on position xi, a map from spatial coordinates to
transition probability is achieved through s(x) = p(θ(x)).

The criteria of unambiguity and optimality can be ex-
pressed as four constraints on the form of s(x). Unam-
biguity means that s(x) has only a single sharp peak of
width r within interval I so that excitation with high
probability only occurs in a small contiguous space. As
p(θ) is periodic in θ → θ ± 2π and, for odd L, necessar-
ily peaks at p(θ = π) = 1, one finds the following three
constraints sufficient to guarantee unambiguity: (1) θ(x)

FIG. 2: Transition probability p(θ) of the sequence SL (solid)
plotted for L = 9 in comparison to a single rotation U0[θ]
(dotted). The range of the envelope p(θ; θr, θa) is shaded.
Primary features of SL are sidelobes of uniform bounded error
δ2r , and a central peak with width parameters θr, θa that scale
as ∼ 1/L. The inset plots the same on a linear scale.

varies monotonically with x, (2) 0 ≤ θ(x) < 2π, and (3)
p(θ) is bounded by some δ2r ≪ 1 outside of the θ = π
peak. Optimality is defined as resolution scaling at the
Heisenberg limit. So, the last constraint is (4) r ∼ 1

L .

Constraints (1) and (2) relate to the spatial variation
of Ω(x) and are easily satisfied. One practical realization
is a Gaussian diffraction-limited beam with spatial profile

Ω(x) = Ω0e
−x2/4λ2

, restricted to x > 0, so that θ(x) is
monotonic in x. By choosing 0 < τ < 2π/Ω0, θ(x) falls
in the desired principle range. In particular, the choice
τ =

√
eπ/Ω0 minimizes r as the necessary peak in s(x)

occurs at xπ =
√
2λ, where θ(xπ) = π and the gradient

θ′ = maxx
∣

∣

dθ(x)
dx

∣

∣ is also steepest. This allows us to define
the resolution θr = rθ′/2 in θ coordinates.

Constraints (3) and (4) relate to p(θ) and are satisfied
by our new family of pulse sequences SL which realize

pL(θ; δr) = |TL [βL(δr) sin (θ/2)] /TL [βL(δr)]|2 , (1)

θr(L) = 2sech−1(δr)/L+O
(

1/L3
)

,

r = 2θr(L)/θ
′,

plotted in Fig. 2, where TL[x] = cos
[

L cos−1 (x)
]

is the

Lth Chebyshev polynomial, and βL(x) = TL−1

[

x−1
]

.
Primary features of pL(θ; δr) include an optimally nar-
row, like θr ∼ 1

L , central peak given a uniform bound

δ2r on sidelobes [20]. We find it useful to define the half-
width θa at arbitrary heights δ2a > δ2r (Fig. 2):

θa(L) = θr(L)R, (2)

R =

√

1−
(

sech−1(δr/δa)/sech
−1(δr)

)2
+O

(

1/L2
)

,

The phases that implement arbitrarily long SL are
elegantly described in closed-form. We first consider
the broadband variant SB

L = (χ1, ..., χL) which re-
alizes pBL(θ; δr) = 1 − pL(θ − π; δr) and is related

to SL via φk = (−1)kχk + 2
∑k−1

h=1(−1)hχh [21].
It is easily verified that SB

3 = (χ, 0, χ) has χ =

2 tan−1
[

tan (π/3)
√

1− β−2
3 (δr)

]

. As (χ, 0, χ) is sym-

metric [18, 19], SB
3 implements an effective rotation of

angle θe, defined through 1 − pBL (θ; δr) = cos2 (θe/2),
about some axis in the x̂-ŷ plane. Thus replac-
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ing each base pulse in SB
L2=3[δr] with a different se-

quence SB
L1=3[1/βL2

(δr)] produces the transition pro-

file pBL1L2
(θ; δr) by repeatedly applying the semigroup

property Tn[Tm[x]] = Tnm[x] of Chebyshev polyno-
mials. For L2 = 3 and any odd L1, this corre-
sponds exactly to the transition profile of SB

3L1
[δr] =

(χ, 0, χ) ◦ SB
L1
[1/β3(δr)], where ◦ defines a nesting op-

erator (a1, a2, ...) ◦ (b1, b2, ...) = (a1 + b1, a1 + b2, ..., a2 +
b1, a2 + b2, ...). As we provide L1 = 3, by induction the
phases of SB

3n [δr] and S3n [δr] can be obtained in closed
form as a function of δr for all n ∈ Z

+.
After SL is applied to |0〉 for some choice of beam po-

sition xc, measuring the state of the system extracts en-
coded positional information. As visualized with the en-
velope in Fig. 2:

p(θ; θr, θa) =











≥ δ2a, |θ − π| ≤ θa,

∈ [0, 1], θa < |θ − π| < θr,

≤ δ2r , otherwise,

(3)

if |1〉 is obtained after a measurement, the object is lo-
cated with high probability in the central peak. Thus
we assign the estimated object position xe to a spatial
interval ∆r of width r = 2θr(L)/θ

′ centered on xc + xπ.
Conversely, if |0〉 is obtained, the xe is located outside,
in I\∆a, with high probability, where ∆a is centered on
xc + xπ with width 2θa/θ

′. However, projection noise
means that false positives or negatives can occur. Fortu-
nately, these can be made exponentially improbable by
taking l repeats.
The probability P of an incorrect classification, that

is, assigning xe to an interval that does not contain xi
is straightforward. Over l repetitions, we measure |1〉 k
times. Note that k is drawn from a binomial distribution
of l trials with mean k̄. If k/l ≥ p̄ = (δ2a + δ2r)/2, we
assign xe ∈ ∆r. Else, we assign xe ∈ I\∆a. Thus

P = max(P1, P2) ≤ exp
[

−l(δ2a − δ2r )
2/2

]

, (4)

P1 = Pr[xe ∈ I\∆a|xi ∈ ∆a] ≤ Pr
[

k < lp̄
∣

∣k̄ = lδ2a
]

,

P2 = Pr[xe ∈ ∆r|xi ∈ I\∆r] ≤ Pr
[

k ≥ lp̄
∣

∣k̄ = lδ2r
]

,

where P bounded by Hoeffding’s inequality applied to bi-
nomial distributions [22] illustrates its exponential decay
with l – an exact evaluation of the cumulative probability
improves this significantly. Thus xe can be reliably clas-
sified to either inside or outside a region of width ∼ 1

L in
∼ 1 measurements with P ≪ 1.
A key insight allows us to sidestep the σ ∼ 1√

t
scaling

of projection noise. Once the object has been classified to
∆r by SL, subintervals of width K times narrower than
∆r can be queried by SKL. As the width of these subin-
tervals scale optimally like ∼ 1

L , it is never profitable, in
the coherent regime, to accumulate statistics indefinitely.
Rather, L should be increased in geometric progression
as far as coherence times allow. In other words, imaging
proceeds by logarithmic search, illustrated in Fig. 3 where
in the nth iteration, xe has been classified to the region In

FIG. 3: The logarithmic search illustrated for an object lo-
cated at xi. At the nth iteration, the estimate has been as-
signed to the interval xe ∈ In. In is split into ⌈K/R⌉ subinter-
vals, and the classification procedure with SL0K

n+1 is applied
to each subinterval. The first positive classification to ∆r

further narrows the estimate to xe ∈ ∆r = In+1. In this
example, K = 3, R ≈ 1/3, δ2a = 1/2, δ2r = 10−4.

of width rn = 2θr(Ln)/θ
′ with a length Ln = L0K

n se-
quence. Although conceptually similar to binary search,
we must account for two key differences: (1) queries are
corrupted by projection noise and (2) the classification
intervals are asymmetric i.e. ∆r 6= ∆a.

The search is initialized by choosing the largest L0

such that r0 exceeds the initial width of I. This is then
followed by n = 1, ...,M iterations of a recursive pro-
cess. The nth iteration involves three steps. First, In−1

is split into ⌈K/R⌉ smaller subintervals of equal width,
each centered on xd, where d = 1, ..., ⌈K/R⌉, K ∈ Z

+,
and the choice of δ2a determines R in Eq. 2. Second,
the classification procedure involving l applications of
SLn

is then applied for each d with shifted beam cen-
ter xc = xd − xπ until for some d, a classification into
∆r occurs. Third, we update In = ∆r, which is of width
rn = rn−1/K. By induction over M iterations, xe lies in
an interval width rM = r0/K

M . Since K > 1, exponen-
tial precision is achieved in only a linear number of ∼M
state initializations and measurements. Any misclassifi-
cation of xe ∈ ∆r such that xi /∈ ∆r will be detected
in the next iteration as the probability of misclassifying
xe ∈ ∆r again becomes vanishingly small like O(P 2). In
that case, the previous iteration is repeated. Assuming
xi ∈ IM is uniformly distributed, the standard deviation
is σ ≈ rM√

12

(

1 +O(P )
)

.

The runtime t = τE
∑M

n=1 Ln of this logarithmic
search is a geometric sum over M iterations, each in-
volving an expected number E = ⌈K/R⌉l/2 +O(P ) ap-

plications of SLn
. Letting Ω′ =

∣

∣

dΩ(x)
dx

∣

∣

x=xπ

, we have

t = E
τL0(K

M − 1)

K − 1
≈ 2Esech−1(δr)√

3(K − 1)

1

Ω′σ
, (5)

where we have used KM ≫ 1, KM = r0/rM , r0τ ≈
2θr(L0)/Ω

′, and rM ≈
√
12σ. We arrive at our final

result: an estimate of object position xe with standard
deviation σ ∼ 1

Ω′t exhibiting a Heisenberg-limited scal-

ing with time, and requiring M ∼ log 1
σ measurements.

Inserting K = 3, l = 5, δ2r = 7
20 , δ

2
a = 13

20 into Eq. 5, eval-
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uating E to O(P 2), and Eq. 4 exactly gives t ≈ 26
Ω′σ .

This compares favorably to the ultimate lower bound
of t ≥ π

Ω′σ , which we obtain by combining the identity
θ = Ωτ with optimal schemes of phase estimation for θ
in related systems [9] wherein entanglement between tri-
als and non-local measurements are allowed – resources
which are extreme experimental challenges.
Notably, our imaging procedure gracefully degrades

in the presence of noise found in real systems. Noise
replaces S and |0〉 with an implementation-dependent
quantum channel E(ρ), and an imperfect initial state ρi
respectively, to produce ρnoise = E(ρi), in comparison to
the ideal case of ρideal = S|0〉〈0|S†. As trace distance [8]
TrD(ρideal, ρnoise) = γ bounds the difference in measure-
ment probabilities using any measurement basis, noise
shifts the envelope in Eq. 3 by δ2r → δ2r + γ, δ2a → δ2a − γ
and modifies Eq. 4:

P ≤ exp
[

−l(δ2a − δ2r − 2γ)2/2
]

≪ 1, (6)

0 < δ2a − δ2r − 2γ

As long as γ < 1
2 , classification succeeds independent of

the noise model as we can always satisfy Eq. 6 by some
choice of δr, δa, and l(γ) ∝ (δ2a − δ2r − 2γ)−2. Success for
γ ≥ 1

2 depends on details of the noise model. Using the
triangle inequality, we can also separate the contributions
from E(ρ) and ρi to obtain γ ≤ γi + γn where γi =
TrD(|0〉〈0|, ρi) and γn = TrD(ρideal, E(|0〉〈0|)). Other
errors e.g. non-ideal measurement bases, can be similarly
included. Of course, in any system with finite coherence
time τc, γ increases with sequence length. To illustrate,
consider a completely depolarizing channel where γn =
1
2 (1 − e−tLn/τc) and ignore initial state errors so γi =
0. For fixed δa, δr, the runtime in Eq. 5 becomes t ∝
∑M

n=1 l(γn)K
n. As the final standard deviation σ ∝ 1

KM ,
the instantaneous scaling in the presence of noise

dt

d(σ−1)
∝ 1 +

2

δ2a − δ2r

τLM

τc
+O

(

(τLM/τc)
2
)

(7)

degrades continuously from the noiseless Heisenberg-
limited scaling limτc→∞

dt
d(σ−1) ∝ 1 to the statistical scal-

ing dt
d(σ−1) ∝

√
t. In the regime of strong decoherence at

τLM ∼ τc, accumulating statistics with SLM
and apply-

ing the law of large numbers becomes more time-efficient
than a logarithmic search.

Generalizations of our imaging procedure are possi-
ble. For example, finding the (xi, yi, zi) coordinates of
an object in three dimensions is reducible to three sepa-
rate one-dimensional problems by using three cylindrical
Gaussian beams oriented about orthogonal axes with spa-

tial profiles θ(x, y, z) =
√
eπe−s2/4λ2

, s ∈ {x, y, z}. More
sophisticated methods include the use of radial Gaussian

beams θ(x, y) =
√
eπe−(x2+y2)/4λ2

to triangulate the ob-
ject position in two dimensions. Additionally, with mul-
tiple objects, crosstalk can be suppressed by decreasing
δ2r by factor linearly proportional to the number of ob-
jects. This allows subintervals of width σ that contains
objects to still be found in t ∼ 1

σ .

Many avenues of further inquiry arise from this
work. For example, our pulse sequences mimic Dolph-
Chebyshev window functions [20, 23] studied in digi-
tal signal filtering [24, 25]. This suggests a connection
for applying the extensive machinery developed for sig-
nal processing to pulse sequences, interpreted as quan-

tum filters [26]. In particular, variants or even gener-
alizations of standard quantum phase estimation [8–10]
can be found as done here: the sequence UL

φ used in
the standard scheme is a special case of our sequences
limδr→1 SL = UL

φ . One could also imbue the quantum
object with additional levels or qubits, possibly leading
to more robust schemes [27] that could even exploit en-
tanglement [28]. Finally, the techniques presented apply
to the entire electromagnetic spectrum. Thus exciting
possibilities include using microwaves of λ ∼ 1cm to ef-
ficiently measure nanoscale ∼ 10nm features, or novel
forms of magnetic resonance imaging where instead of
using magnetic field gradients, a spatially varying radio-
frequency drive strength provides nuclei or quantum dots
with high-resolution positional information.
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