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Topological States in a One-Dimensional Fermi Gas with Attractive Interactions

Jonathan Ruhman, Erez Berg and Ehud Altman

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

We describe a novel topological superfluid state, which forms in a one-dimensional Fermi gas
with Rashba-like spin-orbit coupling, a Zeeman field and intrinsic attractive interactions. In spite
of total number conservation and the presence of gapless excitations, Majorana-like zero modes
appear in this system and can be linked with interfaces between two distinct phases that naturally
form at different regions of the harmonic trap. As a result the low lying collective excitations of the
system, including the dipole oscillations and the long-wavelength phonons are all doubly degenerate.
While backscattering from point impurities can lead to a splitting of the degeneracies that scales
algebraically with the system size, the smooth confining potential can only affect an exponentially
small splitting. We show that the topological state can be uniquely probed by a pumping effect
induced by a slow sweep of the Zeeman field from a high initial value down to zero field. The effect
is expected to be robust to introducing a finite temperature as long as it is much smaller than the
interaction induced single particle gap in the final state of the sweep.

Introduction.— Recent experiments with semiconduct-
ing nanowires have shown possible signatures of Majo-
rana zero modes, the hallmarks of a topological super-
conducting state, localized at the ends of the wires [1, 2].
The two key ingredients required to realize such topo-
logical states are a single particle dispersion affected by
spin-orbit coupling and a Zeeman field, and pairing cor-
relations induced by proximity coupling to an s-wave su-
perconductor [3, 4].

Systems of ultracold atoms offer a high degree of con-
trollability, and are therefore attractive as platforms for
realizing Majorana zero modes [5]. Effective spin-orbit
coupling and Zeeman field can also be generated in sys-
tems of ultra-cold atoms confined to one dimension[6–9].
However, in this case it is much more difficult to induce
pairing correlations externally. This naturally leads to
the following basic question: can intrinsic attractive in-
teractions (generated naturally in atomic systems with
Feshbach resonances) lead to a topological phase and Ma-
jorana zero modes without externally induced pairing?

If the system was two or three dimensional then attrac-
tive interactions, naturally generated in atomic systems
with Feshbach resonances, would give rise to a Bardeen-
Cooper-Schrieffer (BCS) pairing gap equivalent to that
induced by proximity to a bulk superconductor. But this
is not the case in the one-dimensional system in ques-
tion, where long range order superfluid order is impossi-
ble. Nevertheless, it was shown in Refs. [10, 11] that
proximity coupling of two independent spin orbit cou-
pled wires to a single one-dimensional superconducting
wire with quasi-long range pairing correlations would re-
tain a Majorana-like ground state degeneracy. The ques-
tion remains if a single, isolated wire can sustain similar
topological zero modes due to the intrinsic attractive in-
teractions.

In this paper we use an effective field theory to answer
this question and characterize the emergent low energy
modes. We show that this system can exhibit Majorana-
like degeneracies in spite of having no proximity coupling

to an external pairing field. The zero modes are associ-
ated with interfaces between distinct phases that may
form in different regions of the trap due to the spatial
variation of the chemical potential. We term ”topologi-
cal” the phase established where the chemical potential
is inside the Zeeman gap. This phase supports gapless
single-fermion excitations. In other regions the attrac-
tive interactions dominate and generate a gap to single-
fermion excitations. The Majorana-like quasi-zero modes
occur in a configuration, as illustrated in Fig. 1.a, which
includes at least two “topological” regions. The physical
picture and observable consequences of the zero modes
in this charge conserving system, which emerge from
our exact analysis, are notably different from previous
mean field studies [12, 13]. We show how to probe the
zero modes and expose their topological origin through a
pumping phenomena induced by a quasi-adiabatic sweep
of the Zeeman field.
Model — We consider a one dimensional Fermi gas with
spin-orbit coupling, a Zeeman field and short ranged at-
tractive interactions described by the following Hamilto-
nian

H =

∫
dx

[
ψ†
(
− ∂2

x

2m
+ V (x)− µ+ ασxi∂x − δzσz

)
ψ

− U ψ†↑ψ
†
↓ψ↓ψ↑

]
. (1)

Here ψσ annihilates a fermion with spin σ =↑, ↓, ψT =
(ψ↑, ψ↓), m is the particle mass, α the spin-orbit coupling
strength, µ the chemical potential, δz is an effective Zee-
man field, V (x) = mΩ2x2/2 is the parabolic trapping
potential, and U > 0 is the interaction strength.

The parabolic trap potential can be thought of as a
position dependent chemical potential. We consider fill-
ing the system to a point that the chemical potential in
the middle of the trap is located above the Zeeman gap
and continuously decreases towards the flanks. In the
usual case where there is a small proximity induced s-
wave pairing field ∆ < δz, the spatially dependent chem-
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FIG. 1. (a) A one dimensional Fermi gas with synthetic spin-orbit coupling, a Zeeman field and attractive interactions in a
one dimensional harmonic trap. Majorana zero modes are localized at the interface between topological and trivial regions,
approximately where the chemical potential dips below the Zeeman gap at wave vector q = 0. Two topological segments
enumerated by I and II form when the chemical potential at the center of the trap is set to be larger than the Zeeman splitting.
When the segments are close to each other there is a finite probability, Γ, to switch parity between them. (b) The Rashba-like
dispersion at µ = 0 and δz = 0 showing our notations of the four modes crossing the Fermi energy. The black arrows denote
the spin orientation of the helical modes. (c) Schematic depiction of the energy spectrum showing the topological degeneracies.
The low energy excitations associated with dipole oscillations in the trap are spaced by the trap frequency Ω ∼ 1/L as in a
conventional system. However, the ground state as well as the collective excitations are doubled (up to the exponentially small
splitting) because of a topological degeneracy associated with switching fermion parity between the ’topological’ segments.

ical potential tunes the system from a trivial state in the
middle of the trap to two topological states on the sides
which further transform to trivial states at the ends of
the system (see Fig. 1.a). An alternative way to tune the
system between the same two phases, is by varying the
ratio of ∆/δz, while keeping the chemical potential fixed
in the middle of the gap. The topological phase is estab-
lished in the region where ∆/δz < 1. This way of tuning
proves to be a convenient theoretical tool in deriving the
universal low energy theory of the system.

Low energy theory.— As a preparatory step consider an
infinite homogenous wire described by the Hamiltonian
(1) with µ = 0. It is convenient to formulate the long
wavelength theory starting from the case with δz = 0.
Then we have four fermion modes crossing the Fermi en-
ergy, Ra and La, as shown in Fig. 1.b. a = 0, 2 labels
the modes at k = 0 and k = ±2k0 ≡ ±2mα respectively.
Next, we Bosonize the four chiral modes at k = 0,±2k0:
Ra ∼ Fa

√
ρ0
2π e

i(θa−φa), La ∼ Fa
√

ρ0
2π e

i(θa+φa), where
the commutation relations of the Bosonic fields are given
by [φa(x), θb(x

′)] = iπ δa,bΘ(x−x′), F0,2 are Klein factors
to set the Fermionic anti-commutation relations between
the modes and ρ0 is the average density.

The Hamiltonian (1) written in terms of the bosonic
fields includes, as usual, a quadratic (Luttinger liq-
uid) part due to the kinetic energy and forward scat-
tering channel of the interaction. On the other hand
the Zeeman term and the BCS channel of the attrac-
tive interactions give rise to the respective cosine terms∫
dx [gz cos 2φ0 + gi cos 2 (θ0 − θ2)], with the coefficients

gi ≈ ρ20U
(2π)2 and gz ≈ ρ0 δz

2π (at weak coupling). Note that

the cosine terms affect both of Luttinger liquid modes 0
and 2. However, we can simplify the situation by means

of the following canonical transformation:

φ+ = φ0 + φ2

θ+ = θ2

φ− = φ0

θ− = θ0 − θ2
,

In this representation the two modes are decoupled in the
low energy limit[14] and the Hamiltonian takes the form
H = H+ +H−, with

H+ =
u+

2π

∫
dx

[
K+(∂xθ+)2 +

1

K+
(∂xφ+)2

]
(2)

H− =
u−
2π

∫
dx

[
K−(∂xθ−)2 +

1

K−
(∂xφ−)2

]
(3)

−
∫
dx [gz cos 2φ− + gi cos 2θ−] ,

and where u± and K± are the renormalized velocities and
Luttinger parameters in the two channels. The Hamil-
tonian H+ describes a single gapless phonon mode cor-
responding to fluctuations of the total charge ∂xφ+ =
∂x(φ0 + φ2). H− is generically gapped by the cosine
terms; it realizes one of two distinct phases separated by
a critical point. Which of the two phases is established
depends on which one of the two cosine terms is larger
and dominates the physics.

The ‘trivial’ phase is established when the interaction
dominates and θ− is pinned to 0 or π by the correspond-
ing cosine term. This phase is adiabatically connected
to the conventional spin-gapped Luther-Emery liquid,
which forms in a one dimensional Fermi gas with spin
symmetry and attractive interactions. In our case, the
spin symmetry is broken by the Zeeman and spin-orbit
couplings. But because the Zeeman field can only change
the spin by integer values, while the total spin can be ei-
ther integer or half integer, it leaves a residual Z2 fermion
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parity symmetry intact. The spin gap of the Luther-
Emery liquid thus persists, in our case, as a gap to half-
integer spin excitations, which carry the aforementioned
Z2 quantum number.

The phase we term ‘topological’ is formed when the
Zeeman field dominates over the interaction and pins
the field φ− to 0 or to π, while the field θ− is strongly
fluctuating. In contrast to the trivial phase, here single
fermions, or half-integer spin excitations, are gapless.

One can drive a transition between the two phases by
changing the value of the Zeeman coupling while keeping
the chemical potential fixed (say at µ = 0). Alterna-
tively, changing the chemical potential while keeping the
Zeeman field fixed will have the same effect. Specifically,
tuning the chemical potential away from µ = 0 moves
the putative inner Fermi points away from q = 0, thereby
making the Zeeman coupling less relevant. For weak at-
tractive interactions the transition from the topological
to the trivial phase is expected to occur approximately
when the chemical potential goes above or below the Zee-
man gap in the single particle dispersion.
Zero modes.— We now turn to discuss an inhomoge-
neous system with spatial interfaces between the different
phases discussed above. Such a situation occurs naturally
in the harmonic trap potential as illustrated in Fig. 1.a.
First, we discuss the ground state degeneracies expected
to occur in such configurations based only on the proper-
ties of the low energy theory (2) and (3). Back-scattering
terms, which are present due to the absence of transla-
tional invariance, will be discussed later.

Within the trivial regions, the θ− field is pinned to
either 0 or π. The two possible values of θ− do not cor-
respond to physically different states, however, since the
value of θ− does not correspond to a physical observable.
In terms of the fermion densities, θ− can be written as

θ−(x) = π

∫ x

−∞
dx′(R†0R0 − L†0L0 −R†2R2 + L†2L2)

= π

∫ x

−∞
dx′[n↑(x)− n↓(x)], (4)

i.e. it is related to the total spin to the left of point
x. Hence, only the differences between two points
θ−(x1) − θ−(x2) is a physical quantity, independent of
an arbitrary number of spins added at −∞. Moreover,
since the total spin is conserved only up to an integer
value, the physical observable that can distinguish dif-
ferent ground states is the two point correlation function
P1,2 = 〈cos(θ−(x2)− θ−(x1))〉. In a single region of the
trivial phase the field θ− is pinned uniformly, and this
correlation function is always unity.

If there are multiple trivial regions separated by topo-
logical regions (as in Fig. 1), then there can be multi-
ple configurations of θ−(j) (defined in the trivial regions
j), which represent physically distinct ground states.
These states can be labeled by the values of the spin-
parity on each of the topological regions: Pj,j+1 ≡

〈cos(θ−(j + 1)− θ−(j))〉 = ±1. Note that a configura-
tion with Pj,j+1 = −1 requires the phase θ− to twist by π
inside the topological region between xj and xj+1. Such a
twist incurs an energy cost that is exponentially small in
the size of the region, because the phase θ− has vanishing
stiffness in the topological phase. Hence the different con-
figurations of Pj,j+1 indeed represent zero modes up to
the exponential splitting. Moreover the ground state de-
generacy scales with the number of interfaces, I, as 2I/2,
as expected from Majorana zero modes. In the supple-
mentary material a direct mapping to Majorana fermions
is derived by re-fermionizing the low energy theory.

It is important to realize, however, that the exact num-
ber of ground states is 2I/2/2, a factor of half smaller
than for usual Majorana zero modes. The lost zero
mode is the one that corresponds to the total parity
of the system. States that differ in the total parity
P = 〈cos[π(N↑ −N↓)]〉 must also differ in the total num-
ber N = N↑ + N↓. In a charge conserving system
changing N by one (equivalently, twisting the field φ+

by π across the whole system) incurs an energy cost
of 1/(κL), where κ−1 = u+/K+ is the compressibility.
Hence the putative zero mode is indistinguishable from
usual phonons in this case. There is no topological de-
generacy in a configuration with a single topological re-
gion. This is an essential difference, also pointed out in
Refs. [10, 11], between a charge conserving system and
one with proximity coupling to a superconductor.
Back-scattering.— The spatial potential variations,

which give rise to interfaces, may also lead to scat-
tering between the four modes near the Fermi surface.
Of the different processes, only scattering which involve
2k0 momentum transfer, i.e. Hbs ∼ ei2k0xV2k0R

†
2L0 +

e−i2k0xV2k0L
†
2R0 + H.c., can be potentially harmful to

the topological degeneracy discussed above.
These terms have a simple interpretation when ex-

pressed in terms of the bosonic fields. The wire can
then be viewed as a thin superconducting strip, and the
backscattering corresponds to tunneling of an hc/2e vor-
tex across it. A second order process involving a vor-
tex tunneling across the parts of the wire on the two
sides of a topological segment is equivalent to a vor-
tex encircling that region (see also Ref. [10]). Such a
process cannot change the fermion parity of the topo-
logical segment, but it acquires a sign which depends
on the fermion parity there. This leads to a split-
ting of the degeneracy proportional to the magnitude of
the second order process. Because the process involves
excitation of the symmetric (charge) sector, the split-
ting is proportional to the charge correlations between
the two scattering points 〈exp[i(φ+(x1)− φ+(x2)]〉, i.e.
∆E ∼ u−1

+ Vbs(x1)Vbs(x2)|x1 − x2|−K+/4.
We are particularly interested in the backscattering

produced by the smooth potential variation in a harmonic
trap. We anticipate that in this case the backscattering
matrix elements Vbs, induced by the potential gradient,
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would themselves be functions of the system size, thus
leading to further reduction of the energy splitting. To
derive the magnitude of these scattering terms we con-
sider the non-interacting part of the Hamiltonian (1).
First note that far from classical turning points the Fermi
wavelength of both propagating modes is small compared
to the rate of change of the underlying potential. In such
a case the Wannier-Kramers-Brillouin (WKB) approxi-
mation may be applied. In this situation, any backscat-
tering amplitude is exponentially small in the slope of
the potential [15] (and therefore also in the total system
size). The WKB approximation breaks down at the clas-
sical turning points, which are located where the chemical
potential crosses the top or bottom of the Zeeman gap, or
at the edges of the cloud where the chemical potential is
at the bottom of the single particle dispersion. Consider
a pair of backscattering events occurring on the two sides
of a single topological region in the setup shown in Fig.
1(a). On one side of this region there is always strong
scattering from the point x0 at the edge of the cloud.
The topological degeneracy is then lifted by backscatter-
ing events near the interfaces at x2 or x3.

To compute the backscattering strength near x2,3 we
linearize the potential near those turning points, taking
V (x) ≈ V (xj)+r (x−xj), where r = mΩ2 xj ∝ Ω. Next,
we apply a Gauge transformation, which transforms the
linear potential into a vector potential linearly increasing
in time, i.e. V (x) → V (x) − r x and A(t) → r t. This
leads to the translationally invariant Hamiltonian

H0 =
(p− r t)2

2m
− α (p− r t)σx − δzσz, (5)

where the momentum p is conserved. We are left with
the task of finding the evolution of a two-level system
with a time-dependent Hamiltonian. This is just the
famous Landau-Zenner problem. The back-scattering
process involves a transition between the two disper-
sion branches separated by the Zeeman gap δz. The
backscattering amplitude is therefore obtained directly
from the well known Landau-Zenner formula Vbs ∼
e−πδ

2
z/(~αr) ∼ e−Ω0/Ω, where Ω is the trap frequency and

Ω0 = δ2
z/
√
mα2(µ− δz)/2 for δz � ρ0 U (see SI). The

total system length is inversely proportional to the trap
frequency: L ∝ 1/Ω. We conclude that in presence of a
smooth confining potential, such as a harmonic trap, the
splitting of the topological degeneracy is exponentially
small in the system size, as in the non-charge conserving
case. Note that the entire low-energy spectrum is nearly
doubly degenerate.
Probing – Having identified degeneracies with topological
origin in this setup we now turn to the question of detec-
tion. Earlier work, relying on a mean field (BCS) analy-
sis, proposed to detect the degeneracy through emission
spectra of single fermions by an RF pulse [12]. The hall-
mark of the topological state was to be the possibility to
emit a fermion while leaving behind a zero energy hole.

(a) 

(b) 

(c) 

(d) 

x1 x2 x3 x4 

x1 x2 x3 x4 

FIG. 2. Probing scheme. Change of trap configuration upon
decreasing the Zeeman field from high value for the entire trap
is in the topological phase (a) to zero field in which the entire
trap is in the trivial phase (d). The topological pumping of
quasiparticles which results from this process is described in
the text.

The problem with this approach is that a hole left be-
hind in a charge conserving system will generically incur
an energy which scales as 1/L and thus its contribution
to the spectral function would be indistinguishable from
conventional elementary excitations of this gapless sys-
tem.

Here we propose to detect the topological state through
a pumping effect induced by a slow variation of the Zee-
man field, starting from a very high value down to zero.
The configuration of segments in the trap slowly changes
with the changing field as sketched in Fig. 2. (a) When
δz � ε0 the entire trap is in the ’topological’ phase. As
the field is reduced, trivial segments form at the two
wings of the trap and expand inward. (b) A trivial seg-
ment is nucleated in the center and starts to expand while
the two topological segments shrink. (c) The topological
segments eventually vanish leaving the entire system in
the trivial phase with a gap to single particle excitations.
This process can lead to a rather surprising final state
with clear topological origin.

The topological degeneracy is first established after the
trivial segment is nucleated in the middle of the trap at
stage (b). This stage is described by creation of a pair
of Majorana zero modes at the newly formed interfaces 2
and 3. Because they are created from the vacuum these
modes are in a definite fusion channel (i.e. the trivial
channel iγ2γ3 = 1). In this case the fermion parities
P12 = iγ1γ2 and similarly P23 in the topological region
cannot be definite. Rather the system must be in the
superposition state |ψe 〉 = | 1,−1 〉 + | − 1, 1 〉 if the
total particle number is odd, or in |ψo 〉 = | − 1,−1 〉 +
| 1, 1 〉 if it is even. In the subsequent evolution, while all
interfaces are well separated, the system remains frozen
in this state (we assume the sweep is fast compared to
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the exponentially slow dynamics within the topological
subspace).

Finally the two pairs γ1, γ2 and γ3, γ4 fuse when the
topological regions shrink and vanish. In the case of odd
total particle number this process will always end up cre-
ating a single fermion quasiparticle (originating from the
odd parity state of either the left or right topological re-
gion) above the parity gap of the trivial state. This is
expected and does not rely on the topological properties
of the intermediate phases. On the other hand, if the to-
tal number is even, then we have 50% chance to end up
with a pair of quasi-particles above the gap. Here there
is a surprise in the apparent contradiction with naive ap-
plication of the adiabatic which would suggest that we
should end up in the ground state. When probing an
ensemble of systems we expect half of them to have even
particle number and half odd. Therefore the average en-
ergy quasi-particles created in a sweep is ∆ (where ∆ is
the parity gap) in contrast with the naive expectation
of ∆/2. We expect this scheme to work even at finite
temperature as long as the final temperature Tf � ∆ be-
cause the topological degeneracy persists to the low lying
collective excitations.

Conclusions – We predicted that an ultra-cold Fermi gas
with Rashba-like spin orbit coupling in a one dimensional
harmonic trap, a Zeeman field and intrinsic attractive
interactions will form a novel topological state. Majo-
rana zero modes are associated with interfaces between
topological and trivial phases in the trap which form in
different regions due to spatial modulation of the chem-
ical potential. One important difference of the charge
conserving system from one that is proximity coupled to
a superconductor is that in the former case there is no
degeneracy associated with a single topological segment;
at least two are needed for a non-trivial degeneracy. We
have proposed a simple pumping scheme that would de-
tect the degeneracy and expose its topological origin.
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