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We study ionic microgel suspensions composed of swollen particles for various single-particle stiffnesses.

We measure the osmotic pressure π of these suspensions and show that it is dominated by the contribution of

free ions in solution. As this ionic osmotic pressure depends on the volume fraction of the suspension φ, we

can determine φ from π, even at volume fractions so high that the microgel particles are compressed. We find

that the width of the fluid-solid phase coexistence, measured using φ, is larger than its hard-sphere value for the

stiffer microgels that we study and progressively decreases for softer microgels. For sufficiently soft microgels,

the suspensions are fluid-like, irrespective of volume fraction. By calculating the dependence on φ of the mean

volume of a microgel particle, we show that the behavior of the phase-coexistence width correlates with whether

or not the microgel particles are compressed at the volume fractions corresponding to fluid-solid coexistence.

PACS numbers: 82.70.-y,64.70.D-,64.70.pv,82.70.Gg

The hard sphere model (HSM), which underpins the current

understanding of entropic effects in crystallization, applies di-

rectly to suspensions with hard sphere interactions [1]. In

this model, all intensive thermodynamic quantities, including

the pressure π, depend only on the packing fraction φ ≡ ρv,

where ρ is the particle number density and v is the individual

particle volume. For φ ≪ 1, the equation of state of the hard-

sphere fluid follows the ideal gas law, π ≈ ρkT = kTφ/v,

where k is the Boltzmann constant and T is the temperature,

with small corrections of order φ2. At sufficiently large φ, the

fluid phase (at φf ≈ 0.49) coexists with a crystalline solid

phase (at φs ≈ 0.54), so that the width of the coexistence

region for this discontinuous transition ∆φHS ≡ φs − φf is

approximately 0.05 [2].

The fluid-solid phase transition is also observed in col-

loidal suspensions comprising microgels [3–7], which are

deformable colloidal particles consisting of a network of

crosslinked polymers. For such compressible particles, the

particle volume v depends on the density ρ, so that the vol-

ume fraction φ is difficult to quantify [8]. Instead, it is conve-

nient to introduce the generalized packing fraction ζ ≡ ρv0,

where v0 is the volume of the particle in a dilute suspension.

For low ρ, ζ ≈ φ; at high ρ, the particles are compressed,

and therefore v/v0 = φ/ζ is significantly smaller than one.

The overall effect of particle softness on suspension thermo-

dynamics is determined by a combination of two features: the

elastic forces between the particles and the dependence of v
on φ [9].

One of the first studies of the fluid-solid phase transition of

microgel suspensions reported coexistence of a fluid phase at

ζf ≈ 0.59 and a solid phase at ζs ≈ 0.61 [10]. The higher

values of these quantities, compared to φf and φs for the

HSM, result from the soft-repulsive interaction between the

swollen microgels [11]. Consistent with this, the coexistence

width ∆ζ ≡ ζs − ζf was found to be smaller than ∆φHS.

Throughout subsequent studies, the exact values of ζf , ζs and

∆ζ were found to vary with the details of microgel composi-

tion [3, 5, 6, 12, 13]. Indeed, depending on the system con-

sidered, ∆ζ has been found to be smaller than [3, 10], similar

to [6, 12] or larger than [5, 13] ∆φHS, without any appar-

ent correlation with any physical characteristics of the mate-

rial composing the microgel. Evidently, the phase behavior of

suspensions of soft microgels is not fully understood.

In this Letter, we address two challenges: (i) systematically

quantifying the particle volume v, and therefore the packing

fraction φ, as a function of ρ for soft microgels; and (ii) study-

ing the effect of softness on the width of the coexistence re-

gion, as characterized by ∆φ. We accomplish this by mea-

suring the osmotic pressure π of ionic microgel suspensions

and showing that it is dominated by the partial pressure of

free ions in solution, which is significantly larger than the os-

motic pressure due to the translational degrees of freedom of

the colloidal particles. We then calculate the packing fraction

φ using a model for this ionic osmotic pressure. We show that

∆φ decreases for progressively softer microgels. Moreover,

the softest microgels that we study exhibit neither crystalline

nor glassy states. We then connect our findings with two well-

known models of soft spheres [14]: (i) the penetrable sphere

model [15], for which ∆φ > ∆φHS, i.e. behavior that coin-

cides with that of the stiffer microgels in our study; and (ii)

the Hertzian [16] (as well as Gaussian [17]) repulsive sphere

model, which exhibits a decrease in ∆φ with increasing soft-

ness, such that for the softest spheres, no crystallization tran-

sition is observed.

We use poly-vinylpyridine microgels crosslinked with di-

vinylbenzene at pH 3, for which the microgels are fully

swollen [18]. At this pH, the vinylpyridine groups are mostly

ionized but their charge is strongly screened by the counte-

rions in solution. The counterions are thus drawn inside the

microgel, creating an imbalance of osmotic pressure between

the inside of the microgel and the solution outside. Thus, elec-

trostatic repulsions between fixed charges may be ignored but

the ions exert an osmotic pressure that favors the swelling of

the microgels. This pressure is counteracted by the elasticity
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FIG. 1: (Color online) (a) Crystal fraction versus generalized volume

fraction for microgels with cX = 1.6 wt%. (b) Liquid samples at

various values of ζ for microgels with cX = 0.2 wt%.

of the crosslinked polymer network due to the configurational

entropy of the chains. The equilibrium size of the microgel

particle is determined by the balance between these two ef-

fects [19].

The elasticity of the polymer network is thus controlled by

the crosslinker concentration cX. Hence, increasing cX at a

constant pH of 3 results in smaller, stiffer, swollen particles,

as shown in Table I. We study the suspension phase behavior

for microgels at various values of cX as a function of ζ, and

we visually classify whether the sample is in a fluid, solid or

phase-coexisting state. We determine ζf and ζs, and thus ∆ζ,

from a linear fit to the dependence of the crystal fraction in the

samples on ζ, in samples exhibiting phase coexistence [1, 10].

This is shown in Fig. 1a for microgels at crosslinker concen-

tration cX = 1.6 wt%. We find that both ∆ζ and ζf increase

with decreasing cX, as shown in Table I, which is consistent

with previous observations [5]. Note that ζf is always larger

than the φf ≈ 0.49 seen for the HSM, suggesting that repul-

sive interparticle electrostatic interactions are negligible [20];

this is a consequence of the screening of the fixed charge of the

microgels by the counterions inside them. Thus, the dominant

interparticle interaction arises from the elastic energy assso-

ciated with particle deformation. Also note that suspensions

composed of microgels with cX = 0.2 wt% do not exhibit the

Bragg reflections indicative of a crystalline state, as shown in

Fig. 1b. Hence, these suspensions remain a fluid, irrespective

of ζ, in agreement with previous observations on the same

type of particles [5].

To characterize the equation of state for our suspensions,

we measure their osmotic pressure π as a function of ζ using

a membrane osmometer (Wescor 4420). Significantly, π(ζ)
does not appreciably depend on cX, and therefore the particle

volume v, as shown in Fig. 2a, in contrast to the HSM equation

of state. Furthermore, if the pressure π were to result from the

translational degrees of freedom of the colloidal particles, at

low ζ the equation of state would be described by the ideal gas

law. For ζ = 0.02 this this would imply a microgel osmotic

TABLE I: Crosslinker concentration cX, swollen diameter ds mea-

sured using dynamic light scattering, generalized packing fraction

jump across the fluid-solid phase transition ∆ζ, and freezing gener-

alized packing fraction ζf .

cX (wt.%) ds (nm) ∆ζ ζf

0.2 � 1050± 21 - -

0.5 ◦ 1020± 21 0.41 ± 0.07 1.9± 0.1
1.3 △ 705± 8 0.19 ± 0.05 1.05± 0.05
1.6 ▽ 701± 13 0.21 ± 0.04 0.87± 0.04
1.8 ⋄ 634± 8 0.18 ± 0.04 0.76± 0.03
2.5 ⊳ 545± 7 0.14 ± 0.04 0.65± 0.04
4.0 ⊲ 431± 6 0.11 ± 0.02 0.58± 0.02

.

pressure of ∼ 0.1 mPa for cX = 0.2 wt%, but we measure

π ∼ 5 Pa, which is about four orders of magnitude larger. By

using dialysis [21], we confirm the values of π measured with

the membrane osmometer, as shown in Fig. 2b for microgels

with cX = 0.2 wt%. We obtained similar results for systems

of microgels at other values of cX. Thus, we are confident

that we have measured the osmotic pressure of the suspen-

sion correctly, which forces us to conclude that the dominant

effect on the pressure results from some contribution not yet

considered.

We hypothesize that the values of π that we measure corre-

spond to the osmotic pressure of free counterions in solution,

as there are more ions than there are microgel particles in our

suspensions. To calculate this osmotic pressure πc, we note

that the Donnan potential, which confines most of the coun-

terions to within the microgel particles, is constant inside a

particle, but must go smoothly to zero near the particle edge

over a region of thickness corresponding to the Debye length

κ−1 (Fig. 2c). At a distance such that this potential energy is

O(kT ), the ions are not bound to the microgel particle, and

thus contribute to the osmotic pressure of the solution. The

fractionΓ of deconfined ions can be estimated using the model

in Ref. [22] as

Γ =
[

(κ−1 + ds/2)
3 − (ds/2)

3
]

/(ds/2)
3 ≈ 6κ−1/ds,

where κ−1 ≡
√

(ds/2)3/(3 lBQ), with Q being the number

of charges in a microgel, lB the Bjerrum length, and ds the

diameter of a microgel: ds ∼ 3
√
v0. These ions occupy the re-

gion outside the microgel particles, and are sufficiently dilute

that we can estimate their osmotic pressure using the ideal gas

law [22]: πc(φ) = kT ΓQ
v0

φ
1−φ . Substituting φ ≈ ζ, which

we find to hold for ζ < 0.63, this expression fits well the

ζ dependence of the osmotic pressure that we measure up to

random close packing. From this fit (see Fig. 2b), we obtain

the parameter ΓQ. Furthermore, we find that the values of

ΓQ for microgels with different values of cX and, therefore,

differing ds, increases linearly with
√
ds, as shown in Fig. 2d.

This dependence is consistent with the model expectation that

results from considering the ds dependence in the expressions

of Γ and κ−1, provided Q is constant. Indeed, Q does not
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FIG. 2: (Color online) (a) Osmotic pressure versus ζ for microgels of differing cX (see Table I for the symbol code). (b) Dimensionless osmotic

pressure versus ζ for microgels with cX = 0.2 wt%. Hollow symbols: membrane osmometer; crosses: dialysis. The solid line is the best fit to

the theoretical model (see text) for ζ < 0.63. (c) Ionic microgel and its Donnan potential. (d) ΓQ versus
√
ds.

depend on cX, as all particles are synthesized with the same

polymer weight fraction and all have the same deswollen size

[18]. The slope of the linear fit in Fig. 2d is (7.3 ± 1.5) · 103
nm−1/2. Using the value of Q obtained from titrations [19],

we get 1.6 · 103 nm−1/2, which compares favorably with our

result, given the fact that the comparison is between differ-

ent syntheses of the same system and between values that are

obtained by two completely independent means, each with a

corresponding experimental error [24].

Our results are thus consistent with our hypothesis that the

suspension osmotic pressure is dominated by the contribution

due to the counterions that lie outside of and unbound to the

microgel particles. Significantly, as this contribution is sensi-

tive to φ and not to ζ, we can take advantage of the fact that

π = πc to obtain φ = φ(ζ). That is, we use the model to

find the volume of the compressed microgels v(φ) = v0φ/ζ
as a function of ζ. Using this ζ → φ mapping, we can obtain

the phase-coexistence width in terms of the microgel volume

fraction φ. In contrast to the behavior of ∆ζ with cX, we find

that ∆φ is approximately constant for the stiffer microgels

and decreases progressively with particle softness, as shown

in Fig. 3a. For the softest microgels, no crystallization is ob-

served. We also find that v(φ) = v0 for volume fractions that

are always above, but close to, random close packing [25],

as shown in Figs. 3b-3h. Significantly, for the stiffer micro-

gels the particles are not appreciably compressed within the

phase coexistence region, which is indicated by square points

in these figures (see Figs. 3b-3d). In contrast, for the softer

microgels, the particles are compressed in solutions that are at

fluid-solid coexistence (see Figs. 3e-3g).

We now compare these experimental findings with various

simulation results on models of soft spheres that interact via

distinct potentials. In such models, in addition to the entropy

of the translational degrees of freedom there is an energetic

cost associated with each particle configuration, defined in

terms of the pair potential u(r), such that u(r) is ǫ(r0 − r)5/2

(if r < r0) for Hertzian, ǫe−r2/r2
0 for Gaussian, and ǫ (if

r < r0) for penetrable spheres. In all of these models, r0 de-

fines the particle radius, and ǫ−1 is a softness parameter. In the

limit ǫ−1 → 0, the Hertzian and penetrable-sphere models re-

duce to the HSM. [This limit is not well-defined for the Gaus-

sian model due to the smooth tail of u(r).] For the penetrable-

sphere model, the potential u(r) is independent of the pene-

tration depth r, such that additional overlap does not cost ad-

ditional energy. This qualitative difference distinguishes pen-

etrable spheres from Hertzian or Gaussian spheres.

By measuring the coexistence width of our experimental

system in terms of ∆ζ, we find that the width grows for softer

particles, and that for the softest microgel no crystalline phase

is observed. We have not found these two features within any

single numerical model of the phase behavior of soft spheres

[26] – models such as the Hertzian [16] or Gaussian [17]

soft-sphere models exhibit no crystalline phase for sufficiently

soft potentials, but also exhibit a narrowing coexistence re-

gion as the potential softens away from the hard-sphere limit;

other models, such as the penetrable-sphere model [15], ex-

hibit a widening of the coexistence region with increased par-

ticle softness, but in these models crystallization is observed

for all values of the softness parameter. By recomputing the

width of the coexistence region in terms of ∆φ, we find that

this width shrinks as cX decreases or, equivalently, for pro-

gressively softer particles, as shown in Fig. 3a. Thus, for the

softest microgels, models such as the Hertzian [16] or Gaus-

sian [17] soft-sphere models seem more applicable. However,

for the stiffest microgels, we observe that∆φ > ∆φHS, which

is not consistent with the behavior of Hertzian or Gaussian soft

spheres [16, 17]. Instead, this physical aspect of stiffer micro-

gels is better captured by the penetrable-sphere model [15].

These two distinct regimes of microgel behavior may be re-

lated to the degree of particle compression at coexistence. In

our experiments, we observe that for suspensions composed of

stiffer particles (Figs. 3b-3d), there is no appreciable compres-

sion at the packing fractions corresponding to coexistence,

and for these stiff particles, ∆φ > ∆φHS and ∆φ does not

depend strongly on cX. On the other hand, suspensions of

softer particles (Figs. 3e-3g) exhibit appreciable compression
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FIG. 3: (a) Packing fraction jump at the fluid-solid phase transition for various microgel suspensions. The horizontal line shows the hard-sphere

value. The dashed line reflects the approximate constancy of ∆φ for the stiffer microgels. The empty symbols correspond to an estimate of

∆φ with the model discussed in the text but using an iterative approach that takes into acount the v = v(φ) change of the particles and hence

the Γ change with φ above random close packing. (b-h) Relative volume changes as a function of φ for microgels with various cX as indicated

on the graphs. The symbols indicate the suspension phase: (▽) liquid, (�) coexisting phases, and (◦) crystal.

at the packing fractions corresponding to coexistence, and for

these soft particles ∆φ is strongly dependent on cX and may

be greater than, equal to, or less than ∆φHS. These two re-

sults suggest that for the stiffer microgels, where individual

particles are not compressed at phase coexistence, the interac-

tion potential is probed at distances comparable to the dilute-

particle size. At these distances, the elastic energy cost is only

weakly dependent on the particle separation, as is the case in

the penetrable-sphere model. This may be justified by noting

that the crosslinker concentration within a microgel particle

is not uniform but, rather, decreases away from the particle

center [27, 28]. In contrast, for the softer microgels, where in-

dividual particles are appreciably compressed at phase coex-

istence, the interaction potential is probed at distances much

smaller than the dilute-particle size. At these distances, the

elastic energy cost is strongly dependent on the particle sep-

aration and, correspondingly, the Hertzian model better cap-

tures the thermodynamics of the coexistence region.

We can further interpret these results in terms of the bulk

modulus kp of the swollen microgels, as we know that par-

ticle deswelling is only appreciable when π ≈ kp [29, 30].

Note that the suspension osmotic pressure is comparable to

kp at volume fractions that correspond to spheres at or above

random close packing, indicating that below this point the as-

sumption φ ≈ ζ is reasonable. The location in φ for phase co-

existence, relative to where microgel deswelling begins, then

implies that for stiffer microgels, whose behavior is consistent

with that obtained in simulations with the penetrable-sphere

model, π < kp at coexistence, so that the particles are not ap-

preciably compressed; for softer microgels, whose behavior

is consistent with that obtained in simulations with Hertzian

spheres, π > kp at coexistence, so that the particles are sig-

nificantly compressed. In fact, for cX = 1.3% and cX = 0.5%,

independent measurement of the single-particle bulk modulus

yields [31] kp = (1.6± 0.1) kPa and kp = (0.40± 0.02) kPa,

respectively, with corresponding osmotic pressures at coexis-

tence that are significantly larger; these are within the ranges

4.3 ≤ π ≤ 6.7 kPa, for cX = 1.3%, and 4.1 ≤ π ≤ 5.7 kPa,

for cX = 0.5%.

Our results highlight the notion that dissolved ions play a

central role in determining the osmotic pressure of colloidal

suspensions, as was recently noted in sedimentation experi-

ments on charged, nondeformable colloids [32, 33]. By using

a model of the ionic osmotic pressure, we estimate the rela-

tion between ζ and φ, and this allows us to find the jump in

∆φ between the solid and fluid phases. In this way, we find

that the phase coexistence region is wider (in terms of φ) than

the HSM value for stiffer microgels, decreases with increasing

microgel softness, and eventually disappears for sufficiently

soft microgels. Our results bring coherence to a broad range

of behavior previously reported for phase transformations of

microgel suspensions [6, 10, 13] by illustrating how the par-
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ticle softness determines the values of the packing fraction at

which crystallization occurs and, thus, how the colloidal soft-

ness controls the width of the phase coexistence region.
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