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A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations
of a conventional nematic are supplemented by a minimal active stress that violates time reversal
symmetry. In practice, active fluids may have not only liquid crystalline but also viscoelastic poly-
mer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a
minimal model of polymer rheology. We find that adding polymer can greatly increase the complex-
ity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of
spontaneous flow along a pipe (a ‘drag-reduction’ effect). Remarkably, active turbulence can also
arise after switching on activity in a sufficiently soft elastomeric solid.

PACS numbers: 47.57.Lj, 61.30.Jf, 87.16.Ka, 87.19.rh

Active materials include bacterial swarms in a fluid,
the cytoskeleton of living cells, and ‘cell extracts’ con-
taining just filaments, molecular motors, and a fuel sup-
ply [1–4]. Such materials are interesting because of their
direct biophysical significance, and as representatives of
a wider class of systems in which deviations from ther-
mal equilibrium are not created by initial or boundary
conditions (a temperature quench, or motion of walls in
a shear cell) but arise microscopically in the dynamics of
each particle. By continually converting chemical energy
into motion, active matter violates time-reversal symme-
try, suspending the normal rules of thermal equilibrium
dynamics (until the fuel runs out), causing strongly non-
equilibrium features such as spontaneous flow. This flow
may remain steady and laminar at the scale of the sys-
tem; may show limit cycles at that scale or below; or
may show spatiotemporal chaos. Since it resembles the
inertial turbulence of a passive Newtonian fluid, the lat-
ter outcome is commonly called ‘bacterial’ (or ‘active’)
turbulence [2, 5–9]. The mechanism is quite distinct,
however, stemming from a balance between active stress
and orientational relaxation, rather than between inertia
and viscosity as in conventional turbulence.

The phenomenology of activity-driven spontaneous
flow can be understood, to a remarkable extent, using
conceptually simple continuum models [1, 10, 11, 13].
These start from the hydrodynamic equations of a passive
fluid of rod-like objects with either polar [11] or nematic
[13] local order, the latter characterized by a tensor order
parameter Q(r) [13]. To the passive equations for such a
liquid crystal (LC) [14] are then added leading-order vio-
lations of time-reversal symmetry; after renormalization

of passive parameters and allowing for fluid incompress-
ibility, what remains is a bulk stress ΣA = −ζQ where ζ,
an activity parameter, is positive for extensile systems,
negative for contractile. In extensile materials each rod-
like particle pulls fluid inwards equatorially and emits it
symmetrically from the poles, with the reverse for the
contractile case. Even without accurate knowledge of ζ,
this approach makes robust predictions. For example,
extensile and contractile systems become separately un-
stable toward spontaneous flow states at critical activity
levels that are system-size dependent, and vanish for bulk
samples. Numerical solution of the active nematic equa-
tions [5, 7–9] show spontaneous flows resembling experi-
ments on bacterial swarms [2] and on microtubule-based
cell extracts [4]. Both of these are extensile nematics,
and we restrict ourselves to this case below [15].

Active nematogenic fluids are often referred to as ‘ac-
tive gels’ [5, 11]. But although all LCs are somewhat vis-
coelastic (due to slow defect motion) these models assume
fast local relaxations and mostly do not address gels in
a conventional sense [12]. Certainly they do not capture
the diversity of viscoelastic behavior that one expects in
sub-cellular active matter containing long-chain flexible
polymers, or other cytoplasmic components, with long
(possibly divergent) intrinsic relaxation times. These
slow relaxations should couple to the orientational or-
der, strongly modifying the effects of activity. Polymers
could also play a strong role in modifying diffusion [16]
and active flows at supra-cellular level: they are present
in mucus, saliva, and other viscoelastic fluids in which
swarms of motile bacteria reside. Notably, many bacteria
excrete their own polymers [17], suggesting an advantage
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in controlling the viscoelasticity of their surroundings.
In this Letter, therefore, we present a model that ad-

dresses the interplay between active LC and polymers
[12]. We sketch its derivation (which requires care) and
give examples of its rich dynamics (which will be ex-
plored further in [18]). Highlights include: an exotic form
of ‘drag reduction’ by polymers for active (non-inertial)
turbulence; spontaneous flows with slow polymer-driven
oscillations; and transient active turbulence within a ma-
terial that is ultimately a solid.

Equations of Motion: The symmetric and antisymmet-
ric parts of the centre of mass velocity gradient tensor
(∇v)ij ≡ ∂ivj are denoted D and Ω [19]. For other ten-
sors the symmetric, antisymmetric, and traceless parts
carry superscripts S,A and T. Conformation tensors for
the polymer and LC are denoted C and Q, where Q is
traceless. The polymeric tensor is C = 〈rr〉, where r is
the end-to-end vector of a chain (or subchain, depending
on the level of description). We introduce a free energy
density f = fQ(Q,∇Q) + fC(C) + fQC(Q,C) where fQ
and fC are standard forms for active nematics [14] and
dumb-bell polymers [20] respectively, as detailed in [21].
The lowest order passive coupling is

fQC = κTr [C− I] Tr
[
Q2
]

+ 2χTr [CQ] . (1)

Both terms vanish for undeformed polymers (C = I).
From the free energy F =

∫
fdV we next derive the

nematic molecular field H ≡ −(δF/δQ)ST as

H = −GQ
[(

1− γ
3

)
Q− γQ2 + γQ3

]
−GQγ I

3Tr
[
Q2
]

+K∇2Q− 2κTr [C− I] Q− 2χCT. (2)

Here GQ is a bulk free energy density scale set by fQ;
K is the nematic elastic constant; γ a control param-
eter for the nematic transition; and GC the polymer
elastic modulus. (See details in [21].) The correspond-
ing molecular field for polymer conformations is simpler:
B ≡ −(δF/δC) = −GC(I−C−1)/2− κITr

[
Q2
]
− 2χQ.

The most general equations of motion then involve at
least four separate 4th-rank tensors describing how Q
and C respond to these molecular fields, and to imposed
velocity gradients. For simplicity we choose the response
tensors of the Beris-Edwards LC theory and the Johnson-
Segalman (JS) polymer model respectively [14]. We then
allow for conformational diffusion in the polymer sector
[26] which adds a gradient term in C of kinetic origin [21].
The result is a minimally coupled model of the passive
C + Q dynamics that reduces to well-established models
when either order parameter is suppressed.

To the coupled passive model we finally add a minimal
set of active terms [13]. In principle one can add all terms
that violate time reversal symmetry arising at zeroth or-
der in gradients and first order in either Q or C−I; these
are given in [21]. Here we suppose for simplicity that
the polymers are not themselves active, and respond to
nematic activity only through fluid advection. This cap-
tures the effect of adding polymer to (say) a cell extract;

alternatively this could describe the collective dynamics
of bacterial suspensions in mucus. (In contrast, one could
build a system of polymers directly from active elements
[27].) There remain two active terms linear in Q; one can
be absorbed into fQ, and the other is the familiar active
deviatoric stress ΣA = −ζQ [13].

The resulting equations of motion for Q and C are:

(∂t + v.∇) Q = QΩ−ΩQ + 2ξ
3 D + 2ξ [QD]

ST

− 2ξQTr [QD] + τ−1
Q H/GQ, (3)

(∂t + v.∇) C = CΩ−ΩC + 2a [CD]
S

+ τ−1
C (2 [BC]

S
/GC + `2C∇2C). (4)

Here ξ is the flow-alignment parameter of the nematic
and a is the slip parameter of the JS model. Each controls
the relative tendency of molecules to align with stream-
lines and rotate with local vorticity. Parameters τQ, τC
are intrinsic relaxation times for nematic and polymer,
while `C governs diffusion in the JS sector [26].

The incompressible fluid velocity v obeys the Navier
Stokes equation ρ (∂t + vβ∂β) vα = ∂β (Σαβ) whose stress
Σ = −P I + 2ηD + ΣA + ΣQ + ΣC combines an isotropic
pressure P , a contribution from a Newtonian solvent
of viscosity η, and active stress ΣA with two reactive
stresses [28]

ΣQ = −K(∇Q) : (∇Q) + 2 [QH]
A

− 2ξ

3
H− 2ξ [QH]

ST
+ 2ξQTr [QH] , (5)

ΣC = −2a [BC]
S

+ 2 [BC]
A
. (6)

Crucially, ξ and a must appear as shown in the reactive
stresses to recover a correct passive limit [14]. In the pure
JS case, but not in general, one can absorb the factor a
in (6) into GC , restoring consistency to the classical JS
model, which sets ΣC = −2BC for all a [14, 29]. A less
careful marriage of JS with active nematic theory would
thus have set a = 1 in (6) but not (4), violating thermo-
dynamic principles [30] and giving incorrect physics.
Parameter Choices: We choose ξ and a within the

flow-aligning and non-shear banding ranges of their re-
spective models, to avoid tumbling and banding insta-
bilities of the passive model in flow. We neglect inertia
(ρ = 0), and choose units where GQ = τQ = Ly = 1,
with Ly the width of the sample, a 2D simulation box
of Lx × Ly = 4 × 1. We choose periodic boundary con-
ditions in x, with no-slip (of v) and no-gradient (of Q
or C) at the sample walls (y = 0, Ly). Default values
for numerics are ξ = 0.7, η = 0.567 and γ = 3 (directly
comparable with [5] for the polymer-free case); we set
a = 1. We vary τC over several decades 10−2 ≤ τC ≤ 106

at fixed polymer viscosity ηC ≡ τCGC = 1, allowing
fast or slow relaxation while retaining comparability of
ΣQ,C . We define `Q = (K/GQ)1/2, the Frank length for
nematic distortions, and vary this in the range 0.002 ≤
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`Q/Ly ≤ 0.025 (comparable to other studies [5, 6]), and
then set `2C/τC = `2Q/τQ to equate the diffusivities of Q
and C. Using careful numerics we are able to address
several decades of activity level 10−4 ≤ ζ ≤ 6. Finally,
most of our work addresses the simplest case where the
coupling of Q and C is purely kinematic: i.e., κ = χ = 0.
In this limit, interaction between polymer and Q is indi-
rect, mediated only via the background fluid velocity v.
However we also present some results for nonzero χ, as
arises in passive nematic elastomers [31].

Results: First, with kinematic coupling only, we ask
whether addition of polymer can suppress the intrinsic
instability of active nematics towards bulk flow. Gen-
eralizing previous results [5, 11, 33, 34], a linear stabil-
ity analysis (detailed in [21]) allowing 1D perturbations
of wavevector k about the quiescent nematic base state
gives a critical activity level (for γ = 3)

ζc =
12k2`2Q

ΛτQ

(
η +

Λ2GQτQ
72

+
a2ηC

1 + k2`2C

)
, (7)

where Λ = 5ξ± 3 for k perpendicular (−) or parallel (+)
to the major axis of Q. Thus ζc always vanishes in bulk
(as k → 0), while the final term shows a stabilizing effect
of polymer in finite systems. This effect is viscous and
not viscoelastic in character, since at threshold, the time-
scale for growth diverges, with τC then infinitely fast in
comparison. This analysis, which we have confirmed nu-
merically (Fig. 1), contrasts with Ref.[16] which reports
polymer-induced bulk stabilization for a related but dis-
tinct active model (with no inherent nematic tendency).

Fig. 1 shows phase diagrams on the ζ,∆ plane, where
∆ ≡ (`Q/Ly)2 represents the stabilizing effect of small
sample sizes. Varying τC at fixed ηC = 1 reveals a very
interesting effect of strictly viscoelastic origin. Among
states showing active turbulence, adding polymer signifi-
cantly extends the parameter range in which macroscopic
symmetry is broken (filled symbols in Fig. 1), as judged
by a criterion (see [21]) of significant net throughput of
fluid along the (periodic) x direction. Thus adding poly-
mer to (say) a fluid showing bacterial turbulence should
effectively ‘reduce drag’ by enhancing throughput at fixed
(active) stress – as it does for pressure-driven turbulent
pipe flow in a passive fluid [35]. The polymer calms the
short scale structure of the active flow, decreasing the ne-
matic defect density and increasing the flow correlation
length towards the system size, thereby favoring restora-
tion of a more organized flow state.

This calming effect of polymer on active flow can be re-
versed by adding direct coupling alongside the kinematic
one. Of the two couplings in fQC , only the χ term is
sensitive to the relative orientation of tensors C and Q;
the disruptive case is χ > 0 so that these tensors want to
be misaligned. Fig. 2 shows three novel flow states; for
movies see [36]. Among these are a shear banded state
with interfacial defects (related to those seen in [8, 37]);
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FIG. 1. State diagrams without (upper) and with (lower)
polymer of relaxation time τC = 4τQ. Initial condition: direc-
tor n (i.e., major axis of Q) uniformly along y. Symbols: ×:
quiescent; squares: oscillatory; triangles: steady banded flow
(cf [5, 32]), circles: unsteady/chaotic. Filled symbols denote
states with a significant net throughput (along the periodic
direction x) . Lines show (solid) the 1D instability (bend-
ing mode) of the specified initial condition; (dotted) that of
the splay mode for initial condition with Q along x, and
(dashed) the observed crossover line ζbend2Dc beyond which
the phase diagram becomes independent of which of these ini-
tial states was chosen. The bottom three panels show states,
all with net throughput, from the τC = 4 phase diagram
above: banded (ζ = 0.023, ∆ = 10−5), oscillatory (ζ = 0.741,
∆ = 1.6×10−4) and chaotic (ζ = 1.75, ∆ = 8×10−5); colour
scale indicates (nxny)2. Defects of topological charge ±1/2
are identified by green dots (+) and red squares (-).

coexistence of ‘bubbling’ active domains and regions with
director along the vorticity axis; and states showing pe-
riodic modulation of a complex flow pattern on a long
time scale set by τC , confirming a direct role for polymer
viscoelasticity in creating these new states.

New and unexpected physics can also arise when this
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FIG. 2. Three spontaneous flow states seen with added poly-
mer, all with τC = 10. Upper frame: a pair of defects trav-
eling along the interface of a shear-banded state (ζ = 3.2,
∆ = 10−4, χ = 0.002). Middle frame: coexistence of ‘bub-
bling’ active domains and regions where the director is out of
plane (black) (ζ = 6, ∆ = 10−4, χ = 0.004). Lower frame:
an exotic oscillatory state which coherently ‘shuffles’ left and
right on timescale τC (ζ = 6, ∆ = 10−4, χ = 0.002). Colour
scale indicates (nxny)2.
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FIG. 3. (a) A scalar measure of polymer stress, 〈Tr [C− I]〉,
against time for τC = 100 (bottom, red) → 104 (top, blue) at
fixed ηC = 1. Data for τC infinite, GC = 10−3 (bold dashed),
10−5 (bold dotted) are also shown. (b) Areal defect density n
against time for infinite τC , with GC = 10−1 (black, bottom)
→ 10−7 (blue, top); steps arise because n is discrete. In both
panels, ζ = 3.2, ∆ = 8× 10−5.

long polymeric time scale becomes effectively infinite, as
would describe an active nematic (such as an actomyosin
cell extract) within a background of lightly cross-linked
elastomer. We address this limit in two ways: first by
increasing τC (holding ηC = 1), then with τC infinite at
small finite GC (giving infinite ηC). The passive limit of
this system is a nematic elastomer [31]; a full theoretical
treatment of the active counterpart will be presented else-
where [38]. One might expect all of the flow instabilities

reported above to be completely absent in what is, after
all, a solid material. But this expectation turns out to
be misleading. Since GC � GQ, the sample can strongly
deform before its small elastic modulus has appreciable
effects [39]. Accordingly the system should initially show
a spontaneous flow instability as though no polymer were
present, possibly allowing complex LC textures to form,
which then must respond to a growing polymer stress.
Numerically (setting χ = 0 for simplicity) we indeed find
the onset of spontaneous flow. For τC <∼ τQ = 1 the dy-
namics is essentially the same as without polymer, and
the exponential growth of a shear banding instability is
tracked by the polymer stress. We have checked that
these observations are stable for small, negative values of
χ.

Strikingly, for τC >∼ τQ, the first phase of exponential
growth is followed by a second one (Fig. 3a), arising be-
cause the active turbulent state – like its passive inertial
counterpart – contains regions of extensional flow where
polymers stretch strongly in time. Although for small GC
large local strains are needed to arrest the spontaneous
flow, the time needed to achieve these grows only loga-
rithmically as GC → 0. For τC � τQ, rather soon after
its initial formation, the turbulent state indeed arrests
into a complex but almost frozen defect pattern. There-
after the defect density decays slowly, roughly as t−1 (see
Fig. 3b for τC → ∞ case), which is the classical result
for passive nematic coarsening [40]. This process is slow
enough that the strain pattern created by the arrested
active turbulence might easily be mistaken for a final
steady state. Our arrest mechanism, where strong poly-
mer stretching in extensional flow regions creates strong
stresses in opposition, may relate closely to the drag re-
duction effects reported above.

Conclusion: To address active viscoelastic matter, we
have created a continuum model combining the theory
of active nematics with the well-established Johnson-
Segalman (JS) model of polymers. In the passive limit,
our model is thermodynamically admissible by design – a
nontrivial achievement since the JS model itself is admis-
sible only by accident. Our model shows that polymers
can shift, but not destroy, the generic instability to spon-
taneous flow shown by active nematics above a critical ac-
tivity (which still vanishes for large systems). They can
also have a strong ‘bacterial drag reduction’ effect, pro-
moting finite throughput in states of active turbulence.

An antagonistic coupling between polymer and ne-
matic orientations produces instead new and complex
spontaneous flows, some with oscillation periods set by
the polymer relaxation time. Finally, the elastomeric
limit of our model reveals, strikingly, that classifying a
material as a solid does not a priori preclude its show-
ing turbulent behavior. Though implausible for inertial
turbulence, in the active case this outcome, which arises
when GC/GQ <∼ 0.1, looks experimentally feasible for
subcellular active matter (though probably not swarms
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of bacteria) within a lightly cross-linked polymer gel. We
hope our work will promote experiments on these and
other forms of active viscoelastic matter.
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Note Added: After completion of our study a paper
appeared in press, addressing similar topics from a some-
what different perspective [41]. This treats the sponta-
neous flow of active particles embedded in a viscoelastic
fluid in two dimensions, but unlike our work it (a) omits
liquid-crystalline order, and (b) allows for concentration
fluctuations. This complementary approach qualitatively
confirms some of our findings on bacterial drag reduction.
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