
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phase Diagram of a Three-Dimensional Antiferromagnet
with Random Magnetic Anisotropy

Felio A. Perez, Pavel Borisov, Trent A. Johnson, Tudor D. Stanescu, Robbyn Trappen, Mikel
B. Holcomb, David Lederman, M. R. Fitzsimmons, Adam A. Aczel, and Tao Hong

Phys. Rev. Lett. 114, 097201 — Published  4 March 2015
DOI: 10.1103/PhysRevLett.114.097201

http://dx.doi.org/10.1103/PhysRevLett.114.097201


Phase diagram of a three-dimensional antiferromagnet with

random magnetic anisotropy

Felio A. Perez,∗ Pavel Borisov, Trent A. Johnson, Tudor D. Stanescu,

Robbyn Trappen, Mikel B. Holcomb, and David Lederman†

Department of Physics and Astronomy,

West Virginia University, Morgantown, WV 26506-6315, USA

M. R. Fitzsimmons

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Adam A. Aczel and Tao Hong

Quantum Condensed Matter Division,

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

(Dated: February 23, 2015)

Abstract
Three-dimensional (3D) antiferromagnets with random magnetic anisotropy (RMA) that have

been experimentally studied to date have competing two-dimensional and three-dimensional ex-

change interactions which can obscure the authentic effects of RMA. The magnetic phase diagram

of FexNi1−xF2 epitaxial thin films with true random single-ion anisotropy was deduced from mag-

netometry and neutron scattering measurements and analyzed using mean field theory. Regions

with uniaxial, oblique and easy plane anisotropies were identified. A RMA-induced glass region

was discovered where a Griffiths-like breakdown of long-range spin order occurs.

PACS numbers: 75.30.Kz, 75.50.Ee, 75.10.Hk, 75.70.-i, 71.23.-k
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There is much interest in understanding the properties of random magnets because of

possible applications in magnetic recording technology, such as modulating exchange bias

using antiferromagnets (AFs) with magnetic disorder [1, 2], and because their behavior

can be used to understand complex systems in general [3–5]. For example, new quantum

computing algorithms use quantum annealing protocols developed to probe spin glasses [6],

social networks can be modeled via competing interactions between nodes [7–9], and random

magnet models can be applied to protein folding and protein aggregation dynamics [10–12].

Antiferromagnetic alloys with magnetic disorder exhibit a wide range of complex phenomena

described by spin glass, random exchange, random anisotropy, and random field Ising mod-

els [13] and are thus experimental realizations [14, 15] of theoretical models that describe

random magnets [16–18]. Therefore, understanding the behavior of random magnets can

lead to insights about the nature of complexity resulting from random interactions.

Here we focus on AFs with single site random magnetic anisotropy (RMA). Antiferromag-

netic alloys, such as FexCo1−xCl2, FexCo1−xBr2, FexCo1−xTiO3, and K2CoxFe1−xF4, have

been studied previously in which the effective RMA (ERMA) consists of competing intra-

and inter-layer magnetic exchange coupling constants [14, 15, 19–24]. However, competing

exchange interactions do not map to a single-site magnetic anisotropy near the phase tran-

sition temperature, and therefore the critical behavior of these systems is not representative

of a true AF with RMA. This can be demonstrated using the spin Hamiltonian

H = ΣiD (Szi )2 + Σij∆JijSzi Szj + ΣijJijSi · Sj, (1)

where Si is the spin vector at the ith site, D is a single-site anisotropy constant, ∆Jij is the

difference between intra- and inter-layer exchange coupling constants, and Jij is the intra-

layer exchange coupling constant. In the mean field approximation, taking into account only

strongest neighbor interactions J , the Hamiltonian for a spin on the λ sublattice of the AF

becomes

Hλ = D (Szλ)2 + z∆JSzλ
〈
Sz
λ

〉
+ zJSλ · 〈Sλ〉 , (2)

where z is the number of neighbors located on the sublattice λ that interact with a spin Sλ.

The second term on the right hand side of Eq. 2, the effective single-ion magnetic anisotropy

resulting from the anisotropic exchange interaction, is strongly temperature (T ) dependent

near the Néel temperature TN because 〈Szi 〉 → 0 as T → TN . On the other hand, the first

term, which represents a true single-ion anisotropy, is not T dependent and therefore domi-
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nates the physics in the vicinity of the magnetic phase transition. Consequently, the physics

that governs a system with true random single-ion anisotropy near the phase transition will

be in general different from the physics generated by an ERMA produced by anisotropic

exchange interactions. Specifically, the effects of spin fluctuations resulting from the RMA

will be masked for T ∼ TN for the ERMA model, while they should dominate for the true

RMA model (this is the same reason why a non-random system with D < 0, such as FeF2,

behaves like an ideal Ising model for T ∼ TN [25]). Moreover, renormalization group theory

calculations indicate that the type of magnetic disorder (e.g., random infinite-component

anisotropy, two-component random anisotropy, competing random exchange interactions)

have significant effects on the phase diagram and phase transition phenomena [26]. Here we

report on the phase diagram of a solid solution of two 3D AFs that have random orthogo-

nal anisotropies originating solely from the single-ion anisotropies of each component. We

observe a RMA-induced glassy region near TN which results from the strong RMA present

in this system.

FeF2 and NiF2 share the rutile crystal structure with similar lattice parameters (a =

b = 4.6974 Å, c = 3.3082 Å for FeF2 and a = b = 4.6501 Å, c = 3.0835 Å for NiF2 at

T = 290 K) [27, 28]. Both materials are 3D AFs with similar exchange interaction strengths

with similar TNs, 73.2K and 78.4K, for NiF2 and FeF2, respectively [25, 29]. Their magnetic

anisotropies are, however, very different. FeF2 has a strong uniaxial anisotropy which results

in its magnetic moments being aligned along the tetragonal c-axis [25]. In NiF2, moments

order antiferromagnetically in the a− b plane (Fig. 1) and are canted by ≈ 0.4◦ with respect

to the a- or b-axis [29]. Weak ferromagnetism in NiF2 is due to the presence of two non-

equivalent magnetic sites in the NiF2 crystal lattice [30]. The similarity of crystal structures

and magnetic exchange interactions in NiF2 and FeF2 suggests that FexNi1−xF2 is an ideal

system to study RMA, where the anisotropy depends on whether a site is occupied by Ni2+

(favoring a− b plane ordering) or Fe2+ (favoring c-axis ordering) [2, 31].

Epitaxial (110) FexNi1−xF2 films were grown with nominal thicknesses of 37 and 100 nm

on (110) MgF2 substrates at 300 oC via molecular beam epitaxy [2, 32] and capped with

10 nm BaF2 or Pd layers to prevent oxidation. The Fe concentration x was determined

using a quartz-crystal monitor with an accuracy of ±0.05 [2, 32]. X-ray diffraction indicated

a systematic change in the lattice parameter with x, with no evidence of NiF2/FeF2 phase

segregation and a structural domain size of approximately 20 nm [33]. X-ray photoelec-
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FIG. 1. TRM for FexNi1−xF2 samples measured inH = 0 after field cooling inHFC = 100 Oe. Data

for x = 0 and 0.10 were measured with HFC perpendicular to the c-axis; all others measured with

HFC parallel to the c-axis. Right: magnetic and crystalline structures of the parent compounds

NiF2 (x = 0) and FeF2 (x = 1). Yellow, blue, and red dots are F−, Ni2+ and Fe2+ ions, respectively.

tron and x-ray absorption spectroscopy (XPS and XAS), as well as x-ray magnetic circular

dichroism (XMCD) measurements indicated that the local environment of the Fe and Ni ions

was consistent with what is expected from the fluoride rutile structure and no impurities

were detected [33].

Thermal remanent magnetization (TRM) measurements consisted of measuring the mag-

netization M while increasing T from T = 5 K in H = 0 after field-cooling (FC) from

T = 300 K in a field HFC = 100 Oe (Fig. 1) along the in-plane [001] (c-axis) and [11̄0] (⊥

c-axis) directions. The transition temperatures were determined by fitting the data near the

phase transition with a rounded power-law

I = I0

σc
√

2π

∫ ∞
0

(1− T/T ′c)
β
e−(Tc−T ′

c)2/2σ2
cdT ′c, (3)

where Tc is a transition temperature, β is a critical exponent, σc is the width of the transition,

and I0 is an overall scaling factor [34, 35]. Magnetic hysteresis loops were measured as a

function of T and found to be in agreement with previous measurements of FexNi1−xF2/Co

bilayers [2, 32, 33]. FC and zero-field cooled (ZFC) measurements of M vs. T of all alloy

samples behaved in a way that can be explained by the appearance of a ferromagnetic

multi-domain state during the ZFC process and its realignment after field-cooling (see Fig. 2
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FIG. 2. (a) TRM data near the phase transition for four representative samples. Symbols are

data and red curves are fits to Eq. 3 with two transitions for x = 0.30, 0.47 and one transition for

x = 1.0 and x = 0.0. Inset: M measured while warming with H = 80 Oe applied along the c-axis

after ZFC from T = 300 K to 5 K and during FC from 300 K to 5 K for the x = 0.47 sample. (b)

∂M/∂T of the x = 0.47 TRM and FC data measured under different applied fields. Vertical blue

lines indicate transition temperatures T1 and T2.

inset). TRM data in Fig. 1 show the general effect of alloying on M . Small deviations of x

from the pure phases resulted in significant increases of M at low T , but these values were

much smaller than would be expected for ferrimagnetic order [36], and are therefore due to

magnetic disorder.

TRM phase transitions with HFC ‖ c-axis, and HFC ⊥ c-axis for various samples are

shown in Fig. 2(a). The TRM data for all alloy samples had an inflection at a lower T than

the actual onset of the remanent magnetization, while the pure FeF2 and NiF2 samples only

had one transition. The fits to the data using Eq. 3 with two transitions for the alloys and

one transition for the pure samples, indicated that β ≈ 0.34 ± 0.05 for all samples. The

presence of two phase transitions is more clear in the form of two minima at T = T1 and

T2 by calculating ∂M/∂T vs. T , as shown in Fig. 2(b). When M was measured in a small

HFC applied along the c-axis, the transition at T2 broadened substantially with respect to

the TRM, while the transition at T1 and the low T behavior remained unaffected. This

occurred for all samples with 0.2 < x < 1.0. For x = 0.1, a similar transition was observed
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with H ⊥ c, indicating the existence of the easy-plane ordering similar to that of pure NiF2;

for H ‖ c, the data had unusual behavior [33] due to the existence of an oblique phase, as

discussed below.

There are two possible explanations for the T1 < T < T2 behavior: (1) a first order

spin-reorientation transition from an Ising-like, single-axis anisotropy structure, similar to

FeF2, to a weakly ferromagnetic structure, similar to NiF2, at T = T1 with increasing T , or

(2) a transition at T = T1 from the FeF2 magnetic structure to a magnetically disordered

structure. To determine which explanation is correct, neutron scattering was measured in

x = 0.1 and x = 0.3 100 nm thick samples [33]. Prior to measurement, the samples were

cooled in HFC = 60 Oe ‖ c-axis. Once cooled to T = 4 K, H was removed and the integrated

intensities of the magnetic (100) and (001) reflections with their background subtracted,

I(100) and I(001), were measured as a function of increasing T . From neutron scattering

selection rules, I(100) ∝ L2
c +L2

b, where Lb,c is the component of the staggered magnetization

vector L of the AF along the c- or b-axis, while I(001) ∝ L2
ab, where L2

ab = L2
a + L2

b is

the component of L in the a − b plane. Here L = (M1 −M2), where M1,2 are the two

sublattice magnetization vectors with M1 = M2. Explanation (1) would result in I(001) 6= 0

only in the T1 < T < T2 temperature range. On the other hand, explanation (2) requires

that I(100), I(001) > 0 only for T < T1 because lack of long-range order in the T1 < T < T2

range would preclude the observation of magnetic scattering. For both samples, the data in

Fig. 3(a) indicated the presence of a single transition, and therefore explanation (2) must

be correct.

For the x = 0.3 sample, I(001) = 0 for 0 < T < 85 K, and therefore the spins ordered along

the c-axis only. Fitting the data to a rounded power law phase transition similar to Eq. 3,

but with β → 2β because I ∝ L2, yielded the results shown in Fig. 3(b). The value of TN
coincided with T1 measured for x = 0.1 and x = 0.3 samples within uncertainties. The values

of β from neutron scattering agreed with those from the TRM measurements, which are in

better agreement with critical exponents associated with 3D Ising, Heisenberg, and random

exchange models (β ≈ 0.35) [25] than with the 3D random field model (β ∼ 0.1) [34, 37, 38].

For the x = 0.1 sample, both I(100) and I(001) were non-zero at low T , and both → 0 as

T → TN , which indicates that L pointed at an oblique angle θ between the c-axis and the a-b

plane for T < TN . The values of θ(T ) were calculated using tan θ =
(
I(001)/I(100) − 1/2

)1/2
,

where L2 = L2
c + L2

ab and assuming that Lb = La. The results are shown in Fig. 3(c).
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FIG. 3. (a) Neutron scattering intensity as a function of T for the x = 0.3 (red ©) and x = 0.1

samples (blue �). Filled and open symbols indicate (100) and (001) reflections, respectively. Lines

are guides to the eye. (b) Intensity near Tc. Black curves are best fits to Eq. 3 (with β → 2β) with

the parameters shown in the graph. (c) Angle of L as a function of T with respect to the c-axis

for the x = 0.1 sample calculated from the data in (a). The solid curves are MFT results for the

values of x indicated in the graph.

The phase diagram in Fig. 4, constructed from the TRM and neutron scattering data,

can be modeled using mean field theory (MFT) [30, 33, 39]. MFT results are shown in

Fig. 4. The paramagnet (PM)-AF phase transition boundary was reproduced by setting the

exchange constants to JFeFe = 0.475 meV, JNiNi = 1.63 meV, and JNiFe = 0.94 meV, and

using the known single-ion anisotropy constants DFe = −0.80 meV and DNi = 0.54 meV

[29, 40]. TN values for pure NiF2 and FeF2 samples were larger than expected from the bulk

parameters, but this has been previously attributed to strain (piezomagnetism) [41, 42].

The exchange constants were therefore different than the bulk values (JFeFe = 0.451 meV

and JNiNi = 1.72 meV) [29, 40]. The non-monotonic dependence of T2 on x is due to an

enhancement of the exchange between unlike ions, JFeNi = 0.88 meV >
√
JFeFeJNiNi, similar

to what has been observed in FexMn1−xF2 [39]. It is unlikely that piezomagnetism could

cause this effect because the strain should vary linearly between the x = 0 and x = 1

endpoints, given that FeF2 and NiF2 have the same crystal structure, which would lead to

a monotonic dependence of T2 on x.

MFT also predicts a region where oblique ordering occurs, similar to prior MFT results for
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FIG. 4. FexNi1−xF2 magnetic phase diagram. Regions are indicated by AFa-b (ordering in the

a-b plane), AFc (ordering along the c-axis), AFAG (anisotropy glass phase), AFO (oblique phase),

and PM (paramagnetic phase). The PM-AF phase boundary calculated using MFT is denoted by

the solid green curve. Horizontal error bars represent uncertainties from quartz crystal monitor

measurements. Vertical error bars are transition widths σTC
. Measurements for samples that had

a response for H ⊥ to the c-axis ([1̄10] direction, 4) are also indicated. Magenta lines enclose the

MFT AFO region. Transitions observed via neutron scattering are indicated. The dark blue curve

is a AFc-AFAG phase boundary drawn as a guide to the eye.

AF systems with anisotropic exchange couplings [16, 18]. The canting angle θ(T ) calculated

using our model is depicted in Fig. 3(c) [33]. The behavior was extremely sensitive to x.

Remarkably good agreement was found for x ∼ 0.1205, which is consistent with the sample’s

nominal concentration of x = 0.1 ± 0.05, but with JNiFe = 1.02 meV. This indicates that

other exchange interactions neglected by the model may play a role in determining θ(T ).

Although we cannot completely discount the possibility that AF order for the x = 0.10

sample is a result of local fluctuations in x that would locally tip the order from c-axis to

a− b plane ordering, the agreement of θ(T ) data with theory suggests that the presence of

the oblique phase is likely.

Regions of different types of order predicted by the calculations are indicated in Fig. 4.

Whereas the calculated PM/AF boundary agrees well with T2, neutron scattering data

indicate that long-range order disappears for T > T1. Therefore, a Griffiths-like [43–45]
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short-range order phase exists in the T1 < T < T2 region as a result of the random single-

ion anisotropy. Griffiths phases in AFs usually result from order parameter fluctuations

reinforced by randomness in the exchange interactions. For example, magnetic field-induced

antiferromagnetic fluctuations have been reported in metamagnetic FeCl2 [46], in intraplanar

frustrated FeBr2[47], and in the dilute AFs Fe1−xZnxF2 [48] and Rb2Co1−xMgxF4 [49]. Here

we propose a mechanism where a breakdown of magnetic long-range order occurs at T = T1

with the random orthogonal single-ion magnetic anisotropy playing the role of an effective

local random field that enhances antiferromagnetic order parameter fluctuations. A RMA-

induced anisotropy glass region exists in the interval T1 < T < T2, where T2 is the upper

phase transition determined by the average exchange interaction strength of the alloy.

In conclusion, the magnetic structure of FexNi1−xF2, an authentic 3D AF with random

single-ion magnetic anisotropy, transforms from easy a-b plane to the easy c-axis with in-

creasing x via an oblique phase region at x = 0.10−0.14. Two phase transition temperatures,

T1 and T2, were identified for 0.2 < x < 0.9. Long-range order disappears for T > T1, but

short-range order persists up to T = T2. The short-range order is a result of the RMA which

induces a magnetic glass phase for T1 < T < T2. This phase is similar to magnetic glassy

states formed as a result of combining structural disorder with frustrated exchange interac-

tions, but with randomly distributed single-ion anisotropies replacing exchange frustration

as the driving mechanism.
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