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The unusual temperature dependence of the resistivity and its in-plane anisotropy observed in
the Fe-based superconducting materials, particularly Ba(Fe1−xCox)2As2, has been a longstanding
puzzle. Here we consider the effect of impurity scattering on the temperature dependence of the
average resistivity within a simple two-band model of a dirty spin density wave metal. The sharp
drop in resistivity below the Néel temperature TN in the parent compound can only be understood
in terms of a Lifshitz transition following Fermi surface reconstruction upon magnetic ordering. We
show that the observed resistivity anisotropy in this phase, arising from nematic defect structures,
is affected by the Lifshitz transition as well.

PACS numbers: 74.70.Xa, 72.10.Fk, 72.10.Di, 74.25.Jb

Lifshitz transitions (LT) in metals [1], where Fermi sur-
faces change topology, have mostly been studied as zero
temperature (T ) phenomena driven by external param-
eters such as doping and pressure, etc [2, 3]. Tempera-
ture driven LT that can occur in spin or charge density
wave phases of metals have received comparatively less
attention. In this context, an interesting aspect of the
Fe-based superconductors (FeSC) is their multi-band na-
ture with several hole and electron pockets. After band
reconstruction in the spin density wave (SDW) phase,
some of these pockets can disappear due to the increase
of the SDW potential with lowering temperature. Re-
cently, a combined study of electron Raman and Hall
conductivity on SrFe2As2 has reported signatures of such
a transition [4]. This motivates us to study the effects of
such transitions on the charge transport of the FeSC. Us-
ing a model where current relaxation is due to impurity
scattering, we find remarkably strong signatures of such
transitions in both the average resistivity ρavg and the re-
sistivity anisotropy ρani that are consistent with known
experimental trends of these quantities.

The charge transport properties of the FeSC, par-
ticularly of BaFe2As2, are currently the subject of in-
tense research. The ab-plane anisotropy of the resistivity
ρani ≡ ρa− ρb of the strain detwinned crystals below the
structural transition temperature TS has an intriguing
sign with the shorter b axis being more resistive than the
longer a axis [5–7]. The anisotropy weakens upon enter-
ing the SDW phase even though the magnetic order by
itself breaks C4-symmetry. Furthermore, the anisotropy
magnitude in the SDW phase typically increases upon
light doping. Together with other measurements [8–16],
substantial ρani has been taken as strong evidence for in-
trinsic electronic nematic behavior [17–19]. The behavior

of the average resistivity ρavg, which has received consid-
erably less attention, is also highly unusual [20]. In the
parent compounds and lightly doped systems, ρavg falls
abruptly below the SDW transition at TN , in dramatic
contrast with conventional SDW systems such as Cr.

Several theoretical works have attempted to explain
the origin of ρani based on either anisotropic inelastic
scattering with spin fluctuations giving rise to hot-spot
physics [21–23], or on an anisotropic Drude weight of the
carriers [24, 25]. Note that, in the 122 systems, where
the anisotropy has mostly been studied, the band struc-
ture poses an additional challenge, since the ellipticity
of the electron pockets vary along the kz axis; the ellip-
ticity at kz = 0 and π planes have opposite signs [26].
Consequently, in theories, where the sign of ρani is de-
termined by the ellipticity ξe of the electron pockets on
each kz plane, such as those involving spin fluctuation
scattering, at least a partial cancelation is expected after
the kz-average, and the total ρani will depend on details
of the band structure.

In contrast, to the best of our knowledge, there is no
theory of the characteristic drop in the average resistiv-
ity ρavg ≡ (ρa + ρb)/2 immediately below TN . Clearly,
it is important to simultaneously account for this un-
usual feature of ρavg in addition to ρani. A drop in the
inverse Drude weight below TN has been recovered in
simulations [24] and ab initio calculations [34], but this
quantity is distinct from the resistivity and includes no
information about the scattering mechanism. Qualita-
tively, the sharp drop in ρavg below TN can be under-
stood in terms of a collapse in the scattering rate due
to the decrease in phase space upon partial gapping of
the Fermi surface, which then overcompensates the loss
of carriers. However, since these two competing effects
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have the same physical origin, namely the growth of the
SDW amplitude with decreasing T , the challenge here is
to understand why the scattering rate collapse dominates
the resistivity, at least in the undoped and lightly doped
compounds, and whether this collapse is dominated by
the elastic or inelastic scattering channel.

Our focus on impurity scattering can be appreci-
ated from Fig. 1(a) where we fit the resistivity data of
BaFe2As2 from Ref. 35 in the high-T paramagnetic phase
(T > TN ≈ 141 K) to ρavg = A+BT 2. We find excellent
agreement up to T ≈ 300 K, which argues in favor of
conventional Fermi liquid and disorder scattering, rather
than bad-metal physics [36]. More importantly, we find
that A≫ BT 2

N by an order of magnitude, implying that
already at TN the elastic scattering from impurities dom-
inates over inelastic processes.
The relevance of impurity scattering to explain ρani

is currently being debated. Recently, Ishida et al. [35]
reported that, upon annealing, ρani of BaFe2As2 nearly
vanished, while significant anisotropy remained in Co-
doped compounds. They argued that ρani is due to “ne-
matogens” or anisotropic scattering potentials induced
by Fe vacancies and Co defects. Such spatially extended
defects aligned preferentially along a-direction have also
been reported by scanning probe studies [37–44]. From
the theoretical standpoint, C4 symmetry breaking de-
fect structures around pointlike impurities driven by or-
bital [45] or spin [46, 47] correlations have indeed been
found in realistic models of the Fe-based materials. On
the other hand, Kuo and Fisher [48], from a comparison
of Co and Ni doped samples, have argued that the strain
induced ρani does not depend on impurity concentration
and therefore is an intrinsic property of the carriers.

The following are our main results. (i) We show that
the characteristic drop in ρavg(T ) in the SDW phase is
a consequence of one or more temperature-driven LT.
(ii) The result applies to a multiband system in a “dirty”
limit, in which an effective elastic scattering rate Γ > W0,
where W0 is SDW potential at T = 0. In the opposite
limit, ρavg(T ) increases in the SDW phase. (iii) Con-
sistent with our earlier study [47], we find that extended
anisotropic impurity states aligned along a-direction give
rise to ρani < 0 in the paramagnetic state. More impor-
tantly, we show that the anisotropy is independent of the
ellipticity of the electron pockets provided the scattering
is dominantly intraband. (iv) For parameters relevant for
the parent compound, the LT produce a drop in ρani(T )
below TN which is consistent with experiments. This fea-
ture is suppressed by reducing W0 sufficiently, which is
in qualitative agreement with the measured doping de-
pendence of ρani(T → 0).

Model. We consider the two-band model of Brydon
et al. [49] along with a mean field description of the
SDW state, and introduce intra-band impurity scatter-
ing. Since our goal is to study the effect of rapid change of
density of states due to a T -driven LT, we do not expect
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FIG. 1. (Color online) (a) Fit (red line) of resistivity data
(black dots) from Ref. 35 in the high-T paramagnetic phase
with ρavg = 2.5 × 10−1 + 9.1 × 10−7T 2. (b) T -evolution of
the total density of states and the c- and f -electron scattering
rates. Insets: Fermi surface evolution due to T -dependence
of SDW potential. TN , T ∗

e , T ∗

h are defined in text. (c) T

dependence of average resistivity for various total scattering
rates Γ. ρn ≡ ρavg(T = TN). (d) ∆ρavg (defined in text)
dependence on W0 and Γ.

orbital physics to affect the results qualitatively. The
Hamiltonian is given by H = Hc +Hf +HSDW +Himp.

Here, Hc =
∑

k,σ ε
c
kc

†
k,σck,σ and Hf =

∑

k,σ ε
f
kf

†
k,σfk,σ

describe c-hole and f -electron bands, with spin σ, cen-
tered around Γ and X/Y points of the 1Fe/cell Brillouin
zone (BZ) with dispersions εck = εc +2tc(cos kx + cos ky)

and εfk = εf + tf1 cos kx cos ky − tf2ξe(cos kx + cos ky),

respectively. HSDW =
∑

k,σ σWc†
k,σfk+Q,σ + h.c., with

Q = (π, 0). SDW potential W = W0 tanh(2
√

TN/T − 1)
for T ≤ TN and zero otherwise. We specify all ener-
gies in units of tc, and we choose εc = −3.5, εf = 3.0,
tf1 = 4.0, tf2 = 1.0, TN = 0.04. Depending on the mag-
nitude of W0, there are either no LT (W0 < W ∗

e ), or one
LT (W ∗

h > W0 > W ∗
e ) where electron pockets disappear

below T < T ∗
e , or two transitions (W0 > W ∗

h ) where, in
addition, hole pockets disappear below T < T ∗

h < T ∗
e .

(W ∗
e ,W

∗
h , T

∗
e , T

∗
h ) depend on the dispersion parameters.

The impurity potential Himp =
∑

k,q,σ Vqc
†
k,σck+q,σ +

(c → f), with Vq = V0 + V1(1 + 2 cos qx), describes
scattering of electrons with both isotropic point-like
(V0-term) and anisotropic extended impurity (V1-term)
potentials. The latter is modeled by three point-like
scatterers aligned along the long/antiferromagnetic a-
direction (x-axis), and constitutes T -independent analogs
of the emergent nematogens reported in Ref. 47. In the
BaFe2As2 system, V0 might represent weak out of plane
disorder not capable of generating nematogens [46, 47],
and V1 strong in-plane scatterers like Fe vacancies.

We treat the impurity scattering in the Born ap-
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proximation, and calculate the c and f -scattering rates
Γc
k(ω) = − Im[ni

∑

k′ |Vk−k′ |2Gcc
k′k′(ω)] where ni is the

impurity concentration, and similarly Γf
k(ω), respec-

tively. We parameterize the two impurity potentials by
defining the scattering rates Γ ≡ n0V

2
0 Ntot and Γ1 ≡

n1V
2
1 Ntot, where (n0, n1) are the concentrations of point-

like and extended impurities respectively, and Ntot is the
total density of states at the chemical potential. Note
that, due to c-f mixing in the SDW phase, the Green’s
functions acquire double indices. Here Gcc, Gff , etc.,
denote retarded Green’s functions in the absence of dis-
order. In other words, we do not calculate the scattering
rates self-consistently, but we checked that doing so does
not change the results significantly. We ignore the real
parts of these diagonal (in c-f basis) self energies since
our aim is only to extract lifetime effects from the im-
purity scattering. Similarly, we do not intend to study
how impurity scattering affects the SDW potential, and
consequently we ignore impurity induced off-diagonal self
energies. We calculate the conductivity in units of e2/~

σii = −2
∑

k∈BZ

∫ ∞

−∞

dω

π

∂nF(ω)

∂ω

{

[2vck,i Im Ḡcc
kk(ω)]

2+

[vf
k,i Im Ḡff

kk
(ω)]2 + 4vck,iv

f
k+Q,i[Im Ḡcf

kk+Q
(ω)]2

}

, (1)

where Ḡ represent the impurity dressed Green’s func-
tions, vc,fk the velocity vectors, and i is the (a, b) com-
ponent of the conductivity tensor ←→σ (which is diagonal
by symmetry). The factor 2 before vck in the brackets
accounts for two hole pockets at Γ.
Note that ρavg(T ) and ρani(T ) are T -independent in

the paramagnetic phase of this model, while the main T -
dependence in the SDW phase is due to that of the po-
tential W (T ). By contrast, in experiment ρani is peaked
near TN [35]. In Ref. 47 we argued that this T -dependent
anisotropy is intimately related to the unusual nature of
the nematogens, whereby they grow in size as the system
approaches TN . In the current study of the effects of LT,
we ignore this T -dependence for simplicity.
Average resistivity. We compute first ρavg(T ) by con-

sidering only point-like impurities (V1 = 0). In this case,
changing the sign of the ellipticity ξe → −ξe is approx-
imately equivalent to ρa ↔ ρb so ρavg(T ) is unchanged
(see below). Thus, we compute it reliably for a given
ellipticity, which we fix to ξe = 2. In Fig. 1(b)–(c) we
take W0 = 0.32 with W0/TN = 8 (consistent with op-
tical measurements [50, 51]), such that W0 > W ∗

h . The
Fermi surface reconstructions associated with the two LT
as a function of T are shown in the inset of Fig. 1(b). The
main panel of (b) shows rapid drops in Ntot(ω = 0) and
in the scattering rates Γc,f (ω = 0), which is expected
from the loss of Fermi surface sheets associated with the
LT. These two competing trends define a crossover in the
T -dependence of ρavg(T ) which is shown in Fig. 1(c). For
small Γ≪W0 (clean limit), the loss of carriers dominates

0 0.1 0.2 0.3 0.4 0.5
−0.12

−0.08

−0.04

0

0.04

W
0

(ρ
a
−

ρ
b
)/
(ρ

a
+

ρ
b
)

W*
e

W*
h

Γ
1
 = 0.5Γ

T
0
,ξ
e
=+2

T
N
,ξ
e
=+2

T
0
,ξ
e
=−2

T
N
,ξ
e
=−2

T
0
,avg[ξ

e
=±2]

0 0.2 0.4

−0.2

0

0.2 Γ
1
 = 0

d
Fe-Fe

a

b

FIG. 2. (Color online) Main panel: ρani vs SDW gap W0 for
Γ1 = 0.5Γ. Curves for ellipticity ξe = ±2 at T = T0 = 0
(upward/downward triangles respectively) and at T = TN

(dots/circles respectively), and for the average of 2-plane
model (dashed line). The dash-dotted line indicates ρani = 0.
W ∗

e , W
∗

h are defined in text. Bottom inset: same quantities
for Γ1 = 0. Top inset: cartoon of extended impurity potential
aligned along antiferromagnetic axis a.

and the resistivity increases with lowering T . But for
large Γ≫W0 (dirty limit), the decrease in the scattering
rates dominates, and results in a drop in ρavg(T ) whose
magnitude for Γ = 2 is comparable to that of the parent
compounds. Note that this scenario of enhanced conduc-
tivity due to increased lifetime, as opposed to that due
to enhanced Drude weight [24], is consistent with opti-
cal measurements [50, 51]. Furthermore, at T = 0 we get
Γc(ω = 0)≪W0 [see Fig. 1(b)], which agrees with optical
conductivity measuring the Drude peak and the spectral
weight depletion due to SDW as well-separated features
in frequency [50, 51], while the remaining Γf (ω = 0) con-
tributes to a broad background.
Next, we define the net change in average resistivity

∆ρavg ≡ ρavg(T = 0) − ρavg(T = TN ), and show how it
varies with Γ and W0 in Fig. 1(d). For W0 < W ∗

e there is
no LT and the change is negligible. For W0 > W ∗

e , such
that the system undergoes at least one LT, we see clearly
the dirty (where ∆ρavg < 0) to clean (where ∆ρavg >
0) crossover as Γ is changed for fixed W0. This implies
that ρavg(T ) of undoped/lightly-doped compounds can
be explained by a LT provided W ∗

e < W0 < Γ.
Resistivity anisotropy. We model the Fermi surface of

the 122 systems by calculating the contributions to the
conductivity from the planes kz = π (0) with their disper-
sions differing only in the f -band ellipticities ξe = 2 (−2).
We calculate the resistivity anisotropy of the planes
ρani,ξe ≡ ρa,ξe − ρb,ξe separately, and then the exper-
imentally relevant net anisotropy ρani = ρ̄a − ρ̄b from
the average of the conductivities of the two planes, i.e.,
ρ̄i = 〈σi(kz)〉

−1
kz

≃ 2/(ρ−1
i,ξe

+ ρ−1
i,−ξe

), where 〈〉kz
is the ex-

act integral over kz, which we have approximated by the
average of the contributions at kz = 0 and π. As noted
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earlier for Γ1 = 0, since ξe → −ξe leads approximately to
ρa ↔ ρb, the net anisotropy ρani ≃ 0 for T < TN , as seen
in experiments on annealed samples [35], even though the
SDW state itself breaks C4 symmetry (see Fig. 2 bottom
inset). The real BaFe2As2 Fermi surface is considerably
more complicated, and there is no exact cancellation be-
tween the contributions of kz = 0 and π to ρani, but the
true ρani will nevertheless be considerably reduced due
to kz averaging.

We now consider nematogen scattering by setting Γ1 =
0.5Γ, and calculate the anisotropies both in the param-
agnetic and the SDW phases. Fig. 2 shows ρani,ξe and
ρani at T = TN and 0 for a wide range of W0. We note
that both ρani(TN) < 0 and ρani(0) < 0, consistent with
experiments. The physical implication of the negative
sign is that the nematogens, being aligned along the a-
direction, scatter more carriers moving along b than those
moving along a. Consequently, we expect this feature to
hold even in the presence of interband impurity scatter-
ing. Next, we note that ρani,ξe(TN ) is independent of
the sign of ξe, which can be understood as follows. In the
paramagnetic phase, assuming intraband-only scattering,
the c- and f - bands decouple. Consequently, shifting only
the f -band by (π, π), keeping the c-band unshifted, is an
allowed unitary transformation. ρani,ξe(T ≥ TN) is in-
variant under this transformation mapping ξe → −ξe and
is thus independent of the sign of ξe.

Strictly speaking, this argument is invalid in the SDW
phase due to c-f mixing. Nevertheless for W0 ≪ W ∗

e

(relevant for sufficiently doped systems), i.e., without any
LT, the Fermi surface reconstruction is rather weak and
we find that ρani,ξe(0) is practically independent of the
sign of ξe, and moreover ρani,ξe(0) ≈ ρani(0) ≈ ρani(TN ).
However, for W0 > W ∗

e the Fermi surface reconstruction
due to the LT is significant, and ρani,2(0) and ρani,−2(0)
are generally different. On the other hand, the magni-
tude of the net anisotropy is always less than that in the
paramagnetic state, i.e., |ρani(0)| < |ρani(TN )|. This is
due to loss ofNtot(ω = 0) accompanying the LT (presum-
ably, the associated gain in carrier lifetime does not affect
ρani). Thus, the LT scenario is able to explain why the
resistivity anisotropy of the undoped and lightly doped
systems decrease as one goes below TN in the SDW phase
even though the SDW itself breaks C4 symmetry. Fur-
thermore, for W0 < W ∗

h , |ρani(0)| increases with decreas-
ing W0, which is consistent with the observation that the
resistivity anisotropy in the SDW phase increases with
sufficient doping [52]. Finally, in Fig. 3 we show the T
dependence of ρani,ξe(T ) and ρani(T ) for W0 = 0.2 (in-
termediate doping) with W0/TN = 8.

Conclusions. We studied how T -driven Lifshitz transi-
tions, where Fermi pockets disappear due to an increasing
SDW potential, affect the average resistivity ρavg and its
anisotropy ρani of FeSC in the magnetic phase. By fit-
ting experimental data, we argued that the dominant cur-
rent relaxation mechanism in these materials is impurity
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scattering. We considered both point-like and extended
impurity (nematogen) potentials, and showed that the
characteristic drop in ρavg(T ) is due to Lifshitz transi-
tions in a dirty SDW metal. Next, we showed that the
nematogen generated ρani has the correct sign, namely
the direction with longer lattice constant is less resistive.
Within this model, the anisotropy in the paramagnetic
phase is independent of the sign of the ellipticity of the
electron pockets. In the SDW phase, the above holds
approximately when the SDW potential is weak enough.
The qualitative physics discussed here is general enough
to be of potential interest for transport in other multi-
band systems showing density wave instabilities.
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