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Enhancement of superconductivity near a nematic quantum critical point

S. Lederer1, Y. Schattner2, E. Berg2, and S. A. Kivelson1
1Department of Physics, Stanford University, Stanford, California 94305, USA and

2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel 76100

(Dated: January 27, 2015)

We consider a low Tc metallic superconductor weakly coupled to the soft fluctuations associated
with proximity to a nematic quantum critical point (NQCP). We show that: 1) a BCS-Eliashberg
treatment remains valid outside of a parametrically narrow interval about the NQCP; 2) the symme-
try of the superconducting state (d-wave, s-wave, p-wave) is typically determined by the non-critical
interactions, but Tc is enhanced by the nematic fluctuations in all channels; 3) in 2D, this enhance-
ment grows upon approach to criticality up to the point at which the weak coupling approach
breaks-down, but in 3D the enhancement is much weaker.

In both the hole-doped cuprate1–9 and Fe-based10–13

high temperature superconductors, there is evidence of
a nematic quantum critical point (associated with the
breaking of point group symmetry) at a critical dop-
ing, xc, which is close to the “optimal doping” at which
the superconducting Tc is maximal. These materials are
complicated, strongly coupled systems with many inter-
twined ordering tendencies14–17, and in which quenched
disorder plays a role in some aspects of the physics6,18.
Thus motivated by experiments, but without pretense

that the theory is directly applicable to these materials,
we study the situation in which a low Tc metallic super-
conductor is weakly coupled, with coupling constant α,
to collective modes representing the soft fluctuations of a
system in the neighborhood of a nematic quantum criti-
cal point (NQCP). Here, the effective interaction in the
Cooper channel consists of the sum of a non-retarded,
non-critical piece V (0), and a critical piece, V (ind), which
is increasingly peaked at small momentum and energy
transfer the closer one approaches to the NQCP. The
peak width as a function of wave-number and frequency
is, respectively, κ ≡ ξ−1 and Ω ∼ ξ−z , where ξ is the
nematic correlation length, z is the dynamical critical ex-
ponent, and where on the ordered side of the NQCP the
nematic transition temperature is comparable to Ω. For
small α, outside of a parametrically narrow regime about
criticality, the induced interactions among the electrons
can be computed without needing to worry about the
feedback effect of the fermions on the collective modes.
We thus gain analytic control of the problem in a para-

metrically broad quantum critical regime, though not in
a small window of metallic quantum criticality, (see Fig.
1). In the regime of control, V (ind) is weak (Tc ≪ Ω)
and so can be treated in the context of BCS-Eliashberg
theory, or equivalently,19,20 perturbative renormalization
group (RG). The nematic modes play a role similar to
that of phonons in a conventional superconductor, with
the difference that V (ind) is strongly k dependent in such
a way that it is attractive in all pairing channels, and
so enhances Tc in whatever channel is favored by the
non-critical interactions. The enhancement grows rapidly
upon approach to criticality in 2D, and somewhat more
slowly in 3D.
The Model: We consider a system described by the
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FIG. 1: a) Gap function vs. cos kx − cos ky along the Fermi
surface, obtained by solving Eq. 8 in 2D. The non-critical in-
teraction Γ(0) is taken to favor a d-wave gap with form factor
cos kx−cos ky (dot-dashed line) and have a strength such that

λ(0) = 10α2 ≈ 0.05. The solid and dashed lines are, respec-
tively, for kF ξ = 10 (“weak enhancement”) and kF ξ = 100
(“strong enhancement”). Inset: Cartoon of the Fermi sur-
face of the cuprates; the star and squares indicate, respec-
tively, a “cold spot” of the nematic dx2

−y2 form factor where

Γ(ind) vanishes by symmetry, and “optimal points” k̂opt where
Γ(ind) is strongest. b) Schematic phase diagram. The solid
line shows the nematic transition temperature. Outside of
the central shaded region, the quantum critical regime can be
described in terms of a Wilson-Fisher fixed point weakly cou-
pled to a Fermi liquid. Within the shaded region, this picture
breaks down, and a different description (possibly in terms of
a different, strongly coupled fixed point) is needed. Tc is much
smaller than any temperature scales pictured, but varies dra-
matically. The dashed-dotted line shows the behavior of λ,
the pairing eigenvalue (Eq. 7).

effective Euclidean action

S[φ, ψ̄, ψ] = Sel[ψ̄, ψ] + Snem[φ] + Sint[φ, ψ̄, ψ] (1)

where Sel is the action of itinerant electrons with
an assumed weak interaction in the Cooper channel,

V (0)(~k,~k′), Snem is the action of the nearly critical ne-
matic mode φ, and

Sint = α

∫

dτ
d~k

(2π)d
d~q

(2π)d
f(~q,~k)φ~qψ̄~k+~q/2ψ~k−~q/2 (2)

where we have suppressed the spin index on the fermion
fields. We consider Ising nematic order of dx2−y2 symme-
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try in a system with tetragonal symmetry, which implies

that f(~q,~k) is odd under rotation by π/2 and under re-
flection through (1,±1, 0) mirror planes, but even under
inversion, time-reversal, and reflection through (1, 0, 0)
and (0, 1, 0) mirror planes. Since the physics near crit-
icality is dominated by long-wave-length nematic fluc-
tuations, the coupling constant can be replaced by its

value at |~q| → 0, f(~0, ~k) ≡ f(~k) ∼ [cos(kx) − cos(ky)].
(Note: this form factor reflects the symmetry of the ne-
matic order, and is unrelated to the symmetry of the pair
wavefunction).
This effective action already represents a coarse-

grained version of the microscopic physics. In particular,
since the nematic phase breaks the point-group symme-
try of the crystal, φ generally involves collective motion
of both the electron fluid and the lattice degrees of free-
dom, with relative weights that depend on microscopic
details. In the absence of coupling to low energy elec-
tronic degrees of freedom (α = 0), we suppose that as a
function of an externally controlled parameter x (which
could be doping concentration, pressure etc.), there is
a quantum phase transition from a nematic phase for
x < xc in which φ is condensed, to an isotropic phase for
x > xc. Thus, the dynamics of φ are characterized by
d+ 1 dimensional Ising exponents with z = 1.
In the fermion sector we introduce a cutoff, W , de-

fined as the energy scale of the non-critical portion of
the electron-electron interaction, V (0). For instance, if
V (0) is mediated by short-range spin-fluctuations,21 the
cutoff energy is proportional to the exchange coupling J .
Restricting fermion energies to lie belowW justifies both
neglecting all irrelevant couplings (other than those in
the Cooper channel) and treating the remaining interac-
tions as non-retarded. (More generally, we should include
Fermi liquid parameters in Sel, but we will neglect these
for simplicity.)
Effective Interactions: In the small α limit, beyond

a parametrically narrow interval about criticality, one can
integrate out the nematic modes perturbatively to pro-
duce an effective action for the electrons alone. In the
disordered phase (x > xc), the leading order effect is
an additive four-fermion term proportional to α2χ(~q, ω),
which in the Cooper channel results in the net interaction

V (~k+, ~k−, ω) = V (0)(~k+, ~k−)−
1

4
α2|f(~q,~k)|2χ(~q, ω) (3)

where ~k± = ~k ± ~q/2, χ(~q, ω) is the nematic suscepti-

bility which is peaked at ~q = ~0 and ω = 0. With the
usual definition of the critical exponents, χ(~0, 0) ≡ χ0

diverges as δx ≡ (x − xc) → 0 as χ0 ∼ |δx|−γ , and
falls as a function of increasing |~q| and |ω| as χ(~q, ω) ∼
χ0 [Ω2/(c2q2 + ω2 + Ω2)]1−η/2. The ~q-space width of
χ(~q, 0) is thus κ = ξ−1 ∼ Ω1/z ∼ |δx|ν . (From hyper-
scaling, 1 − η/2 = γ/2ν.) The Ising critical exponents
are {ν, η, γ} = {1/2, 0, 1} for d = 3, and {ν, η, γ} ≈
{0.63, 0.03, 1.23} for d = 2.22

There are also other (mostly irrelevant) four-fermion
interactions generated at order α2, but these become ap-

preciable only where the assumptions of our BCS ap-
proach break down, so we ignore them here.60 On the
other hand, they can give rise to observable effects, no-
tably corrections to Fermi liquid theory such as quasi-
particle mass renormalization, which, while small in the
perturbative regime, diverges as a power law approaching
the NQCP.
We have also neglected the effects of higher order terms

in the effective action, generated at order α4 and beyond.
Among others things, these terms include the back-action
of the fermions on the quantum critical dynamics of the
nematic modes, i.e. Landau damping. These effect are
unimportant so long as 1 ≫ α2χ0ρ(EF ) where ρ(EF )
is the density of states at the Fermi energy, i.e. for
|δx| ≫ α2/γ . When this inequality is violated, the appar-
ent critical exponents and critical amplitudes that char-
acterize the nematic fluctuations may deviate from their
d+ 1 dimensional Ising values at the decoupled NQCP.
As in the electron-phonon problem, we adopt a per-

turbative RG approach to account20 for the retarded na-
ture of V (ind). We define dimensionless vertex operators
in terms of the interactions and the Fermi velocities, vk̂
(where k̂ denotes a point on the Fermi surface). We then
integrate out the Fermionic modes with frequencies be-
tween W and Ω. This results in a new effective action
with a high energy cutoff set by Ω, and a renormalized
but now instantaneous vertex in the Cooper channel,

Γ = Γ∗ + Γ(ind) (4)

where the the non-critical (instantaneous) piece of the
vertex operator has been replaced by

Γ∗ = Γ(0)[1 + Γ(0) log(W/Ω)]−1 (5)

where Γ
(0)

k̂,k̂′
≡ V (~k,~k′)/

√
vk̂vk̂′ . However, the induced

interaction is unaffected by this process, so

Γ
(ind)
~k,~k′

≈ −α
2

4
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∣

∣

∣

2
χ(~k − ~k′, 0)
√
vk̂vk̂′

. (6)

This reflects the familiar feature of BCS/Eliashberg the-
ory that only the instantaneous interaction gets renor-
malized by the high energy fermionic modes.
In addition to being highly peaked at small momen-

tum transfer, i.e. small |~k − ~k′|, Γ(ind) has a significant

dependence on the position of k̂ and k̂′ on the Fermi sur-

face: f(k̂) vanishes at symmetry related “cold-spots”23

on the Fermi surface, |kx| = |ky|, and takes on its max-

imal value, f(k̂opt)| = 1, at a set of “optimal pairing

points,” k̂opt. For example for a cuprate-like Fermi sur-
face, these points correspond to the “antinodal points”
on the Fermi surface, as illustrated in Fig. 1a. Not sur-
prisingly we will find that the strongest pairing occurs

for ~k near k̂opt.
Solution of the gap equation: We are now left with

the problem of fermions with energies within Ω of the
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Fermi surface, interacting by an instantaneous interac-

tion vertex Γ - i.e. the BCS problem with a ~k dependent
interaction. Thus, as usual, the superconducting Tc (so
long as the weak-coupling condition Tc ≪ Ω is satisfied)
is determined as

Tc ∼ Ωexp[−1/λ] (7)

where in terms of the eigenstates of Γ,
∫

dk̂′Γk̂,k̂′φ
(a)

k̂′
= −λaφ(a)k̂

, (8)

and λ is the largest positive eigenvalue.
As a function of x, Γ(0) is smooth and analytic (neglect-

ing small corrections in the ordered state which we shall

discuss), but Γ
(ind)

k̂,k̂
grows in magnitude upon approach

to criticality in proportion to α2χ0ρ(EF ) ∼ α2|δx|−γ .
However, as we shall see, the pair-wave-function φ in Eq.

8 is always a more slowly varying function of k̂′ than is

Γ
(ind)

k̂,k̂′
, so the contribution of the induced interactions to

λ always involves the integrated weight,

λ(ind) ≡ α2

4

∫

dk̂v−1

k̂
χ(k̂, 0) ∼ α2ρ(EF )χ0(kF ξ)

1−d (9)

where kF is the Fermi wave-vector. Therefore, in d = 2,
λ(ind) grows in proportion to α2|δx|ν−γ , so the weak cou-
pling BCS approach is valid only for |δx| > O(α2/(γ−ν)).
However, in d = 3, γ − 2ν = 0 so λ(ind) grows only
logarithmically, λ(ind) ∼ −α2 log |δx|. Our principal re-
maining task is to analyze the eigenvalue problem in Eq.
8. This is readily done numerically given an explicit form
of Γ. We begin, however, by discussing certain limiting
cases which can be approximately analyzed analytically.
Regime of “weak enhancement”: The most

straightforward regime to analyze is that in which the
coupling to the nematic mode makes a subdominant con-
tribution to the pairing interaction, i.e. where Γ(ind)

is small compared to Γ∗. Such a regime always exists
sufficiently far from criticality provided that λ(0) ≫ α2,
(where λ(0) is the largest positive eigenvalue of −Γ(0)), a
condition we henceforth assume.
In this regime, the form of the gap function is largely

determined by the non-critical interactions, but Tc is en-
hanced (possibly by a large factor) by coupling to the
nematic modes. This enhancement can be estimated us-
ing first order perturbation theory,

λa = λ∗a + δλ(ind)a ; (10)

λ∗a = λ(0)a

{

1− λ(0)a log[W/Ω]
}−1

δλ(ind)a = −
∫

dk̂dk̂′
(

φ
(a,0)

k̂

)∗

Γ
(ind)

k̂,k̂′
φ
(a,0)

k̂′

where φ(a,0) and λ
(0)
a are, respectively, a (normalized)

eigenstate and eigenvalue of Γ(0). In the neighborhood

of the NQCP, Γ(ind) is peaked about small |k̂− k̂′|, hence

δλ(ind)a ≈ λ(ind)
∫

dk̂|f(~k)|2
∣

∣

∣
φ
(a,0)

k̂

∣

∣

∣

2

. (11)

The degree of the enhancement of pairing thus is larger

the more the gap function is peaked near ~kopt. This re-

sult is valid so long as 1 ≫ λ(0) ≫ λ(ind). Even so,

the enhancement of Tc ∼ T
(0)
c exp[δλ(ind)/(λ(0))2] can be

large if δλ(ind) ≫ [λ(0)]2, and grows larger the closer one
approaches to the NQCP.
We can also estimate the changes to the form of the gap

function, ∆~k, perturbatively in powers of Γ(ind). The gap
function is proportional to the pair wave function, ∆k̂ ∝
φk̂/

√
vk̂. The leading correction to the pair wavefunction

is given by

φk̂ ≈ φ
(0)

k̂

[

1 +

(

δλ(ind)

λ(0)

) |f(~k)|2 − |f |2
|f |2

]

(12)

where |f |2 is the suitably weighted average of |f(~k)|2
over the Fermi surface.61 As a result, the form of the
gap function is little affected by the nematic fluctua-

tions near the cold spots where f(~k) vanishes, but is

enhanced far from them. For example, if ∆
(0)

k̂
has the

simplest d-wave form, ∆
(0)

k̂
∝ [cos(kx) − cos(ky)] , the

leading effect of the nematic fluctuations from Eq. 12
is to admix an increasing component proportional to
(δλ(ind)/λ)[cos(kx) − cos(ky)]

3, as seen in Fig. 1b. In
addition, as derived in the supplementary material, the
gap is renormalized by exp[δλ(ind)/(λ(0))2] (i.e. the same
enhancement factor as Tc) compared to its α = 0 value,
but retains a BCS-like T dependence.
Regime of “strong enhancement”: In 2D, since

λ(ind) grows rapidly with decreasing |δx|, there is a
crossover to a regime62 in which λ(ind) ≫ λ∗. In 3D,
such a regime is not generically encountered where our
approximations are controlled, so we specialize to 2D for
the present discussion. So long as λ(ind) ≪ 1, weak cou-
pling BCS theory still applies, but now the pair wave-
function is dominantly determined by Γ(ind), while the
effects of Γ∗ can, in turn, be computed perturbatively.
With the cuprates in mind, as illustrated in Fig. 1a,
we consider a single large closed Fermi surface with four
cold spots along the zone diagonals, |kx| = |ky|, and four

optimal points at k̂opt = qx̂ + πŷ and symmetry related
points, although the discussion is readily generalized to
more complex Fermi surfaces.
The asymptotic properties of the eigenvalues and

eigenstates of Γ(ind) can be derived analytically, as shown
explicitly in the Supplemental Material. The leading

eigenstates are peaked about the positions k̂opt with
an extent in momentum space κ̃ ∼ kF (κ/kF )

w, where
w = (1 − η)/(3 − η) ≈ 1/3. Since w < 1, the eigenstates
of Γ(ind) vary on a parametrically larger momentum scale
than Γ(ind) itself, as previously stated.
Since both κ/kF and κ̃/kF ≪ 1, to a first approxima-

tion the relative phase of φk̂ in the neighborhood of the
four optimal points is unimportant, and the eigenfunc-
tions are four-fold degenerate. This degeneracy is lifted
by the large momentum transfer portions of Γ: The con-
tribution from Γ(ind) is proportional to α2(κ̃/kF ), which
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is parametrically smaller than δλ∗ ∼ λ∗(κ̃/kF ), the per-
turbative eigenvalue shift produced by Γ∗. Accordingly,
the four leading eigenvalues are λa ≈ λ(ind)+gaλ

∗(κ̃/kF )
where |ga| ∼ 1 depends on the relative phase of the gap
function at the different optimal points. Even where the
non-critical interactions make a small contribution to the
pairing energy, they still determine the relative phase of
the pair wave-function at the different optimal points,
and hence the symmetry of the superconducting state.
For a given symmetry, the splitting between the

largest and next-to-largest eigenvalue is of order
λ(ind)(κ̃/kF )

2 ≪ λ(ind). Within the strong enhancement
regime, there are several sub-regimes depending on the
size of this splitting relative to [λ(ind)]2 and to δλ∗. We
defer discussion of sub-regimes to a later paper, but note
two salient limits, both within the strong enhancement
regime: 1) Sufficiently far from criticality, the form of the
gap function at all temperatures below Tc is determined
by the solution of Eq. 8; even the eccentric shape of
the gap function (shown in Figure 1b) results in only
modest enhancement of |∆max(T = 0)|/Tc. 2) Suffi-
ciently close to criticality, the form of the gap function
becomes strongly temperature dependent. In particular,

the gap function becomes less strongly peaked at k̂opt (κ̃
increases) with decreasing T . In addition, beyond mean
field theory, the near-degeneracy among different symme-
try channels within the strong enhancement regime leads
to a new class of fluctuations involving the relative phase
of the order parameter on different portions of the Fermi
surface, as previously explored in Ref. 24.
Approaching the NQCP from the ordered

phase: Until now, we have considered the approach to
criticality from the disordered side. Unlike the case of
an antiferromagnetic quantum critical point25, in which
the opening of a gap on the ordered side of the transition
results in a strong suppression of superconductivity, in
the case of a NQCP the physics is largely similar when
approached from the ordered side. The major difference
is in band structure, i.e. the distortion of the Fermi sur-
face by an amount δkF ≡ kF,x−kF,y ∝ αkF 〈φ〉 ∼ α|δx|β .
Γ(ind) is qualitatively affected, because under orthorhom-
bic symmetry there are now only two fermi surface posi-

tions k̂opt of optimal pairing rather than four. The lead-

ing eigenstates of Γ(ind) consist of a singlet state of ex-
tended s-wave (“s+ d”) symmetry and a triplet state of
either px or py symmetry.
The distortion of the Fermi surface also alters the

eigenvalues of both Γ∗ and Γ(ind) by corrections in pow-
ers of δkF , but these corrections are negligible near crit-
icality. The major difference between the ordered and
disordered sides comes through the critical amplitude ra-
tio for the quantity χ0ξ

1−d. This is a universal number
of order one associated with the decoupled NQCP, and
gives the ratio of λ(ind) on the two sides of the transi-
tion. It is greater than one for d = 2 and equal to one
for d = 322, implying that, for fixed |δx|, Tc is greater
on the disordered side in d = 2 and comparable on both
sides in d = 3.

Relation to previous work: The importance of the
form factor of the coupling between the electrons and the
quantum critical modes has been explored in the context
of intra-unit-cell orbital current anti ferromagnetism in
Ref. 26. However, there the collective modes were as-

sumed to have an essential ~k independent susceptibility.
The effects on Fermi liquids of boson-mediated interac-
tions with strong forward scattering have been treated
extensively in various related contexts.27–33

We were also inspired by two sets of studies which ad-
dress superconducting instabilities at a NQCP, Refs. 34,
35 and 36. Both address the issue of superconducting
pairing asymptotically close to criticality, which is the
regime we have avoided in the present approach. In this
regime the different fields are intrinsically strongly cou-
pled to each other. Thus, in order to obtain theoretical
control of the problem, both works involve large N ex-
tensions of the model. Refs. 34 and 35 introduce an ar-
tificially large number NF of fermion flavors and a much
larger number of boson flavors, NB = (NF )

2; no pairing
tendency is found to leading order in 1/NB for d ≤ 3.
Ref. 36 treats d = 2 and NB = 1, but extends the model
by introducing both a large NF and a non-local inter-
action characterized by an exponent, ǫ, assumed small.
(the physically relevant limit is NF = 2, NB = 1, and
ǫ = 1.) In contrast to the results of Ref. 35, they con-
clude that Tc at criticality is proportional to a power of
the coupling constant, which is what we would find were
we to extrapolate our results to where λ(ind) ∼ 1.

As we were completing this work, we received a paper
by Maier and Scalapino37 reporting a more microscopi-
cally realistic study of the enhancement of Tc by nematic
fluctuations - the conclusions are complementary and in
broad agreement with the present results.

Relation to experiment: The present results pro-
vide a rationale to associate the anomalous stability7,8

of the superconducting dome in near-optimally doped
YBCO in high magnetic fields with the proximity of a
putative NQCP at doped hole concentration x ≈ 0.18.
The simple d-wave (nearly cos kx − cos ky) character of
the pairing around this doping, at least in the related
material Bi-221238, then suggests that nematic fluctu-
ations play a subdominant role, enhancing a broader
tendency to d-wave pairing (presumably associated with
non-critical magnetic fluctuations). The fact that recent
evidence indicates that a NQCP occurs at near-optimal
doping in some Fe-based superconductors13,39,40 is fur-
ther evidence that such enhancement may be a more
general feature of high temperature superconductivity.
Moreover, the much stronger enhancement of Tc that
arises near a NQCP in 2D may provide some insight as
to why Tc is considerably enhanced in single layer films
of FeSe.33,41,42
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