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Bulk and surface state contributions to the electrical resistance of single-crystal samples of the
topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and
surface charge density, the latter tuned by ionic liquid gating with electrodes patterned in a Corbino
disk geometry on a single (100) surface. By separately tuning bulk and surface conduction channels,
we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a
crossover temperature that depends solely on the relative contributions of each conduction channel.
The surface conductance, on the order of 100 e2/h, exhibits a field-effect mobility of 133 cm2/Vs
and a large carrier density of ∼ 2×1014 cm−2, in good agreement with recent photoemission results.
With the ability to gate-modulate surface conduction by more than 25%, this approach provides
promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal
samples.

Recent theoretical work has proposed that the inter-
mediate valence compound SmB6 may be a member of
a newly classified family of strong topological insulators
[1–3]. Called topological Kondo insulators, these systems
differ from the conventional family of topological insula-
tors [4, 5] such as Bi2Se3 because the bulk insulating
band gap arises due to electronic correlations and opens
at the Fermi energy. These materials are extremely inter-
esting because of the potential for interplay between the
topological states and other correlated electronic states,
as well as the possibility to aleviate issues with chemical
potential shifts due to intrinsic bulk doping [6, 7].

SmB6, one of the first known Kondo insulator materi-
als, has been of interest for many decades due to a long
debate about the nature of its insulating state [8, 9]. It is
now well known to harbor a d-f hybridization gap that
opens at low temperatures and has been well character-
ized by several experimental techniques to lie in the range
of ∼10–20 meV [10–20]. The electrical resistance R(T )
of SmB6 exhibits a thermally activated behavior at inter-
mediate temperatures below room temperature, before
saturating at an approximately temperature-independent
value below a few degrees Kelvin [8, 12, 14, 21–27]. This
robust property has recently been considered a key sig-
nature of topologically protected surface states [1, 26],
prompting many experimental efforts designed to probe
the nature of the conducting states in this material
[14, 16, 18–20, 28–32]. Most recently, strong evidence
confirming the topologically protected nature of these
states has been mounting [28, 33, 34].

Here we present resistance measurements probing the
nature of surface conduction in bulk SmB6 samples, using
variations of bulk crystal geometry and surface ionic liq-
uid gating techniques to, respectively, tune the bulk and
surface conductance contributions. In both cases, R(T )
is well described by a low-temperature, temperature-

independent surface contribution in parallel with a ther-
mally activated bulk contribution, with a crossover tem-
perature that depends on the relative values of each con-
ductance component. Gate-tuned measurements using
a Corbino contact geometry placed on the (100) sur-
face indicate a very large surface carrier density that can
be dramatically changed by application of bias voltage.
Our results strongly support the model of an insulating
bulk with metallic surface states, as previously probed by
other techniques [14, 25, 26], and characterize the tun-
ability, mobility and carrier density of surface charge car-
riers, in good agreement with other spectroscopic tech-
niques. Our study not only confirms the ability to tune
the relative surface and bulk conductance contributions,
but also paves the way for unique gate-controlled device
construction on single-crystal samples of SmB6.

Single crystals were grown using polycrystalline SmB6

as the reactant and Al as the flux in a ratio of 1:200.
Starting materials were placed in an alumina crucible
and sealed in a quartz ampoule under partial Ar pres-
sure. Ampoules were heated to 1250◦C and maintained
at that temperature for 120 hours, then cooled at
-2◦C/hr to 900◦C, followed by faster cooling. Crystals
were etched out of the flux using HCl, yielding mostly
cubic-shaped crystals ranging in size from ∼ (0.2)3 mm3

to ∼ (1.2)3 mm3. Single-crystal x-ray diffraction at
200 K using a Bruker APEX-II CCD system with a
graphite monochromator and a MoKα source yields
excellent refinement of crystallographic parameters,
with lattice constants 4.13308(8) Å for the Pm-3m cubic
structure and goodness of fit convergence at R1 = 0.62%.
All samples were sanded and polished prior to contact
placement. Sample thickness was controlled by means of
sanding and measured using an optical microscope, with
uncertainties dominated by magnification resolution.
Thickness-dependent electrical resistivity measurements
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FIG. 1. a) Electrical resistance of a single crystal of SmB6

as a function of sample thickness, normalized to its value at
20 K. The solid lines represent fits to the data using a two-
channel conductance model [Eq. (1)], with fit parameters
including the surface (panel b) and bulk (panel c) resistance
ratio components rs ≡ Rs/R(20 K) and rb ≡ Rb/R(20 K),
respectively, of the total conductance. [(*) Note geometry
of sample for each 0.0325 mm thickness data set is slightly
different due to loss of sample fraction.]

were performed using the standard AC technique, with
four-wire geometry gold contact wires attached with
silver conducting paint to the (110) face of the crystal.
Gating experiments were also performed on the (100)
face of the crystal, using a four-wire Corbino contact
geometry pattern metalized with Au (200nm)/Ti (10nm)
using thermal evaporation. After mounting on an insu-
lating substrate, samples were covered with ionic liquid
N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium
bis(trifluoromethylsulphonyl)imide (DEME-TFSI,
Kanto Corporation) and an adjacent Au pad was used as
a gate electrode. Ionic liquid application was performed
inside a glove box and the sample was then transferred
to the measurement cryostat within 5 minutes to
minimize electrochemical reaction of DEME-TFSI with
the ambient atmosphere. After each temperature sweep,
gate voltage modulation was done by warming the
sample to 230 K in-situ and changing gate voltage.
Fig. 1a) presents the temperature dependence of the

longitudinal resistance of a single crystal as a function of
thickness variation, with measurements taken subsequent
to each thickness adjustment. To eliminate uncertainty
in the geometric factor arising from varying contact ge-

ometry, we plot the resistance ratio r ≡ R/R(20 K), or
R(T ) normalized to the resistance value at 20 K (approx-
imately the temperature at which the Kondo gap is fully
open). The resistance curves exhibit similar qualitative
behavior to each other and to those reported in the lit-
erature [11, 21, 25, 35] over the entire temperature range
up to 300 K, with 2 K resistivity values ranging between
0.5–2.9 Ωcm.
The crossover from high-temperature, thermally acti-

vated behavior to a low-temperature plateau in R(T ) has
been interpreted as a transition from bulk state- domi-
nated conduction to surface state-dominated conduction
[25, 26, 35]. This picture is consistent with the thickness
dependence of resistance presented in Fig. 1a), which ex-
hibits a clear separation of r(T ) curves from a single trace
at higher temperatures to distinct plateau values for each
thickness at low temperatures. In other words, the rel-
ative bulk-to-surface ratio of conductance shrinks with
decreasing thickness, as expected due to the reduction of
overall bulk conductance.
A simple parallel conductance model is used to ex-

tract the relative contributions, with total conductance
described by G = Gs + Gb, where Gs = 1/Rs is the
surface contribution (assumed temperature-independent)
and Gb = 1/Rb is the bulk contribution, assumed to
be activated in temperature due to a bulk energy gap
∆. Therefore Gb = W ·t/(ρbL)e

−∆/kBT with sample
length L, width W , and thickness t; bulk resistivity ρb in
the high-temperature limit; and Boltzmann constant kB.
Thus, for the dimensionless and geometry-independent
[36] resistance ratio,

r(T )−1 = r−1
s + [rbe

−∆/kBT ]−1, (1)

where rs ≡ Rs/R(20 K) and rb ≡ Rb/R(20 K) are the
dimensionless, normalized surface and bulk resistance ra-
tios, respectively.
Fits to this model using rs, rb and ∆ as free parameters

are shown as solid lines in Fig. 1a). For all thicknesses, we
obtain a thickness-independent energy gap of ∆ = 3.3±
0.2 meV, consistent with other transport measurements
[8, 12, 21, 24, 25]. The values of rs and rb are presented
in Figs. 1b) and c), respectively, showing a clear contrast
in their relationship with thickness; rs exhibits a clear
linear trend with thickness, while rb is independent of
thickness. Understood in the context of their normalized
nature, the linear relation of rs(t) translates to a linearly
decreasing relative contribution of surface conductance
compared to bulk conductance with increasing sample
thickness. Conversely, the extrapolated value of rs(0) =
0± 0.00001 at the zero-thickness limit translates to zero
electrical conductance through the bulk, as expected in
the bulk-surface model at low temperatures.
Previous experiments with electrochemical gating of

Bi2Se3 thin films have shown great success in shifting the
Fermi energy from well within the bulk conducting band
into the bulk gap, allowing the isolated Dirac surface
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FIG. 2. a) Electrical resistance of SmB6 sample as a func-
tion of ionic liquid gate voltage, measured with a Corbino
disk lead geometry placed on the surface of a single crys-
tal, as shown in the inset diagram (superimposed on sample
photo, with green shaded area representing the area covered
by the ionic liquid gate structure). Solid lines are fits to the
two-channel conductance model [Eq. (2)]. Panels b) and c)
present the surface and bulk resistance contributions, respec-
tively, extracted from the two-channel fits as a function of
gate voltage. Panel d) plots the transient current between
the gate pad and ground as a function of gate voltage sweep
rate, measured at 230 K. The solid line is a fit to a charg-
ing capacitor model with a capacitance of 14.4 nF. Panel e)
shows the two-dimensional sheet conductivity as a function of
the change in carrier concentration induced by gating. The
solid line is a fit to a constant-mobility model with a mobility
µ = 133 cm2V−1s−1.

states to be probed directly [37–39]. Gating is, however,
usually only effective at shifting the chemical potential
of thin films or two dimensional systems, not bulk mate-
rials, as the gate electric field is confined to a thin region
near the surface and heavily screened by bulk charge car-

riers. In the case of SmB6, applying a gate voltage to the
surface of a bulk crystal is a simple, yet clear test of the
surface versus bulk contribution of charge carriers. If the
transport is dominated by surface conduction [40], the
Corbino geometry ensures that the electronic transport
occurs only on the surface of a single side of the sample.
For the IL gating measurements, a four-probe Corbino

geometry (see inset of Fig. 2) was patterned using e-
beam lithography on a polished (100) surface of SmB6.
Fig. 2a) presents the R(T ) data for a single corbino de-
vice with various values of applied gate voltage Vg . Sim-
ilar to the case of thickness variation (c.f. Fig. 1), the
variation of Vg has no effect on R(T ) at higher temper-
atures, as exhibited by the collapse of all data onto a
single trace above ∼ 5 K. However, at lower tempera-
tures a clear voltage-dependent splitting of R(T ) occurs,
suggesting an identical tuning of bulk-to-surface contri-
butions to the measured conductance, now controlled by
a gate-controlled shift of the surface state chemical po-
tential.
The same two-conductivity model can be applied, with

the exception that resistance ratios are no longer needed
since no geometries are varying. We therefore fit R(T )
to the following form:

R(T )−1 = Rs
−1 + [Rbe

−∆/kBT ]−1 (2)

where Rs is the (constant) surface resistance and Rb the
bulk resistance in the high temperature limit, and ∆ is
the gap energy as before.
Similar to the thickness case, we obtain a voltage-

independent value of ∆ = 3.78 ± 0.01 meV. Presented
in Figs. 2b) and c) are the results for Rs and Rb, respec-
tively, as a function of Vg, showing that the variation
of Vg has a dramatic effect on the surface resistance Rs,
modulating it by over 25% through the accessible voltage
range, while the bulk resistance Rb remains unaffected
and relatively constant. The large change in saturation
resistance with IL gating (Fig. 2b) but negligible change
in bulk resistivity (Fig. 2c) confirms that the additional
carriers injected by IL gating are confined to a region
very near the surface. This tuning directly confirms the
surface-born origin of low-temperature charge carriers in
SmB6 and demonstrates the unique ability of controlling
surface state conduction via device construction on the
surface of a bulk cystal. In contrast, bulk doping [41, 42]
is known to suppress the hybridization gap, thus reducing
the bulk resistivity, whereas we see no change in our anal-
ysis of the bulk resisistivity with IL gate tuning. We can
also rule out that the IL gating effect is due to changes
in bulk doping in a layer near the surface, which would
manifest as a change in activation energy and Rb, not
seen in our experiment.
The Corbino gating experiment also provides informa-

tion on the sign of charge carriers, their areal density
and their mobility. As shown in Fig. 2a), the varia-
tion of Rs with Vg is a decreasing function, consistent
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FIG. 3. a) Evolution of the crossover temperature T ∗ be-
tween bulk- and surface-dominated conductance, defined as
the inflection point in resistance temperature dependence as
a fuctino of (a) crystal thickness variation and (b) ionic liq-
uid gate voltage tuning. The non-constant evolution of T ∗ is
consistent with the two-channel conduction model (see text),
showing the crossover depends solely on the relative bulk and
surface contributions to the total electrical conduction.

with the presence of dominant electron-like charge car-
riers at the surface. This may seem to be at odds with
some measurements [26, 43] and consistent with others
[8, 18, 19, 25, 29, 44], but it should be noted that tradi-
tional Hall effect experiments are no longer trivial in a sit-
uation with surface dominated transport, where conduc-
tion may be non-uniform. Recent angle-resolved photoe-
mission measurements on SmB6 have observed two large
and one small electron-like surface state bands, centered
at the Γ and X points, respectively, in addition to the
expected hole-like bulk bands [18, 19, 25, 29], suggesting
a large difference in mobilities of each carrier type may
be consistent with our observations.

Using a simple capacitor model to fit the transient gate
current dependence on Vg sweep rate (Fig. 2d)), allows
the determination of the gate capacitance (14 nF), or spe-
cific capacitance cg = 3 µF/cm2, and hence the change in
surface carrier density ∆n = cgVg/e, where e is the ele-
mentary charge. The measured sheet conductivity σ2D is
approximately linear in the gate-induced change in ∆n,
as shown in Fig. 2e), indicating a constant field-effect and
a surface carrier mobility of 133 cm2V−1s−1 (based on
the measured resistance and the distance between volt-
age probe contacts – see Fig. 2 inset). Extrapolation of
the linear relationship to σ2D = 0 provides an estimate
of n ≈ 2× 1014 cm−2 for the total carrier concentration.
Using the unit cell area of (4.13 Å)2 this is amounts to
roughly one third of an electron per unit cell of the sur-
face, which indicates the unlikelihood that the surface
state arises due to impurities on the surface.

While the uncertainty of ∼ 30% for µ and n is large
due to difficulties in estimating sample area and geomet-
ric factor for the Corbino geometry, the absolute carrier
density is in excellent agreement with recent photoemis-
sion results [45]. This agreement should be considered in
the context of two very different surface preparation tech-

niques (i.e., UHV-cleaved versus oxidized), which may
result in non-trivial energy band shifts that render such
agreement fortuitous. The large carrier density suggests,
however, that relatively large Fermi surface pockets make
a significant contribution to the overall conduction. The
relatively low surface state mobility then appears to be
a natural consequence of the very low Fermi velocity for
these surface states, which could possibly explain the dif-
ficulty in observing Shubnikov de Haas oscillations[28].

Finally, in both thickness and gating variation ex-
periments above, the crossover from bulk- to surface-
dominated conductance with decreasing temperature is
observed to change as a function of the control parame-
ter, as expected due to the change in relative weighting
of each contribution. Fig. 3a) and b) present variation
in this crossover temperature T ∗, defined as the point
of inflection of R(T ). The variation of T ∗ with that of
both bulk (thickness) and surface (gating) contributions
to conductance confirms the two-channel model and dis-
proves the prevailing idea that there is a static transition
temperature; rather, it is merely defined by the relative
contributions from the two conduction channels.

In conclusion, we have demonstrated methods to tune
both the bulk and surface contributions to the electri-
cal conduction, thereby providing conclusive evidence for
surface-dominated transport in SmB6 at low tempera-
ture. The evolution of transport with both sample thick-
ness and surface gate tuning fits well to a two-channel
conduction model involving a bulk, activated channel and
a surface metallic channel. Furthermore, the measure-
ment of gated surface conducting states using a Corbino
lead geometry allows for the direct determination the
electron-like sign of the surface charge carriers as well as
the charge carrier density (∼ 2×1014 cm−2) and mobility
(∼ 133 cm2V−1s−1 ). The charge carrier sign and den-
sity are in good agreement with previous photoemission
results for SmB6 . This study adds valuable information
to our understanding of the proposed topological surface
conduction in SmB6 and provides promising use of gate-
tuned devices structured on bulk crystal samples for both
fundamental and applied studies of these unique states.
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085104 (2001).

[14] X. Zhang, N. P. Butch, P. Syers, S. Ziemak, R. L. Greene,
and J. Paglione, Phys. Rev. X 3, 011011 (2013).

[15] M. M. Yee, Y. He, A. Soumyanarayanan, D.-J. Kim,
Z. Fisk, and J. E. Hoffman, ArXiv e-prints (2013),
arXiv:1308.1085 [cond-mat.str-el].
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