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We study the adiabatic pumping of the Chern-Simons axion (CSA) coupling along a parametric

loop characterized by a non-zero second Chern number C(2) from the viewpoint of the hybrid
Wannier representation, in which theWannier charge centers (WCCs) are visualized as sheets defined
over a projected 2D Brillouin zone. We derive a new formula for the CSA coupling, expressing it as
an integral involving Berry curvatures and potentials defined on the WCC sheets. We show that a
loop characterized by a non-zero C(2) requires a series of sheet-touching events at which 2π quanta
of Berry curvature are passed from sheet to sheet, in such a way that e2/h units of CSA coupling
are pumped by a lattice vector by the end of the cycle. We illustrate these behaviors via explicit
calculations on a model tight-binding Hamiltonian and discuss their implications.

PACS numbers: 03.65.Vf,73.20.At,73.43.-f,71.15.Rf,75.85.+t

The discovery of topological insulators (TIs) and re-
lated classes of materials in recent years has generated in-
terest in the Chern-Simons axion (CSA) coupling, which
makes an isotropic contribution αCS to the magnetoelec-
tric response tensor of the material. This coupling, de-
fined as αij = (∂Pi/∂Bj)E = (∂Mj/∂Ei)B, where P (M)
is the polarization (magnetization) and E (B) is the elec-
tric (magnetic) field, is conventionally expressed in terms
of a dimensionless parameter θ defined via

αCS
ij =

θe2

2πh
δij , (1)

where θ is determined by the band structure of the in-
sulator via an integral over the Brillouin zone (BZ) of a
Chern-Simons 3-form according to

θ = −
1

4π

∫
d3k ǫijk Tr[Ai∂jAk − i

2

3
AiAjAk]. (2)

Here Anm
i = i〈un|∂i|um〉 is the Berry connection (or non-

Abelian gauge field) in Cartesian direction i, where un(k)
is the periodic part of the Bloch function of the n’th
occupied band, and the trace is over occupied bands.
The ground-state properties of a band insulator are

invariant under any gauge transformation, that is, any
unitary transformation Unn′(k) that mixes only the oc-
cupied bands. It can be shown that an arbitrary gauge
transformation either leaves the 3-form integral in Eq. (2)
unchanged or else shifts it by exactly 2π times an inte-
ger. Thus, θ is best regarded as a phase angle that is
only well-defined modulo 2π. As a consequence, the pres-
ence of either time reversal (TR) or inversion (either of
which flips the sign of θ) requires θ to be quantized to
an integer multiple of π, with an odd/even value corre-
sponding to an odd/even strong Z2 topological index of a
TR-invariant 3D insulator.[1, 2] One way to understand
the ambiguity of θ modulo 2π, which corresponds to an
ambiguity of αCS modulo e2/h, is to realize that the mag-
netoelectric coupling is related to the surface anomalous
Hall conductivity (AHC) by σ = (θ/2π + C)e2/h. Thus
the measurable magnetoelectric response can be changed

by a quantum if a layer with non-zero Chern number is
attached to the surface, changing the effective value of θ
by 2π.

An interesting consequence of this 2π ambiguity is that
if an insulator is allowed to evolve adiabatically around
a closed loop in the space of parameters determining the
crystal Hamiltonian, with the gap remaining open, then
the fact that the system returns to the initial physical
state means that θ must either return to its original value
or change by 2πC(2), where C(2) is an integer known as
a “second Chern number.” This possibility of “pump-
ing θ by 2π” has been discussed and demonstrated for
some theoretical models,[1, 2] but the characteristic be-
haviors of a system undergoing such an adiabatic loop
have largely remained unexplored.

Recently, we showed that the hybrid Wannier represen-
tation can be a useful and insightful tool for computing
topological indices and inspecting the topological prop-
erties of 3D insulators.[3] In this approach, the occupied-
state wavefunctions are transformed into a maximally-
localized Wannier representation in one chosen direction,
while remaining Bloch-like in the orthogonal directions.
The resulting hybrid Wannier functions (HWFs) inherit
the topological character of the insulator, and plots of
their Wannier charge centers (WCCs) over the 2D BZ
(“Wannier sheets”) were shown to provide a useful means
of visualizing the topological properties of insulators, al-
lowing to discriminate between normal, strong topologi-
cal, weak topological, crystalline topological, and related
states.[3–6]

With these motivations, we ask what happens if an adi-
abatic cycle that pumps θ by 2π is viewed from the point
of view of the HWF representation. How do the WCC
sheets evolve? Is there a characteristic behavior that sig-
nals the presence of a non-trivial cycle (i.e., a non-zero
second Chern number)? Answering in the affirmative,
we show that quanta e2/h of Berry curvature are passed
from one WCC sheet to the next in a series of isolated
band-touching events, in such a way that one quantum
of Berry curvature is pumped by an entire lattice vec-
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tor by the close of the cycle. We illustrate this amusing
and instructive result via numerical calculations on a 3D
spinor tight-binding model and discuss its implications.

We begin with a brief review of the construction of the
hybrid Wannier representation. We choose a special di-
rection, here ẑ, along which the Wannier transformation
is carried out, so that the HWFs are localized in z while
remaining Bloch-like in the other two directions.[7, 8] Ex-
plicitly,

|Wln(kx, ky)〉 =
c

2π

∫
dkze

ik·(r−lcẑ)|un,k〉, (3)

where l is a layer index and c is the lattice constant
along ẑ. In general, there is a U(N) gauge freedom in
choosing the N representatives of the occupied space,
|ũn,k〉 =

∑
m Unm|um,k〉, but there is a unique gauge

that minimizes the spread functional of the WFs along
ẑ.[8] These maximally localized HWFs and their WCCs
z̄n(kx, ky) = 〈Wn0|z|Wn0〉 can be constructed using stan-
dard methods.[8, 9]

For a 2D insulator the WCCs can be plotted as curves
z̄n vs. k⊥ in a 1D projected BZ,[4, 10] while for a 3D
insulator they can be visualized as sheets plotted over
the 2D projected BZ. In previous work[3] we have shown
that these WCC sheets allow one to see how electrons are
adiabatically pumped along ẑ as kx and ky are varied,
thus discriminating between normal and Chern insula-
tors when TR is broken, or between normal and Z2-odd
insulators in the TR-invariant (TRI) case.[3]

It is also of interest to consider the behavior of the
WCC sheets as the crystal Hamiltonian is carried adia-
batically around a loop defined by some cyclic parameter
α corresponding, e.g., to some combination of atomic dis-
placements and/or external fields. A celebrated result of
Thouless[11] is that this results in quantized adiabatic
charge transport, i.e., the pumping of exactly one elec-
tron per unit cell by a lattice vector R during the cycle.
Normally R = 0, but for example if R = cẑ this cor-
responds to the pumping of one electron by one period
along z during the cycle (a first Chern number of C=1),
i.e., a change in electric polarization ∆Pz = −e/Acell

with Acell the projected unit cell area.

Let us see how this evolution occurs from the viewpoint
of the HWF representation. Intuitively, we expect each
WCC sheet to drift along z with increasing α such that
it replaces the one above it, and is replaced by the one
below it, at the end of the cycle. We begin by defining
Berry potentials “living on the sheets” representation as

Ax,ln,l′m = 〈Wln|i∂x|Wl′m〉 , (4)

and similarly for Ay . These are functions of (kx, ky) and
also matrices in the space of sheet labels ln (the nth sheet
in cell l along z). The corresponding Berry potentials in

the Bloch representation are then just

Ax,nm(k) =
∑
l

eikz lcAx,0n,lm(kx, ky) , (5)

Az,nm(k) = z̄n(kx, ky) δnm . (6)

Plugging into the Berry-phase formula for the electronic
contribution Pj = −e(2π)−3

∑
n

∫
d3k Ajn(k), we find

Pz =
−e

(2π)2c

∑
n

∫
d2k z̄n(kx, ky) , (7)

and similarly for Px or Py with Aj,0n,0n replacing z̄n.
For the case of a parametric loop that pumps electrons
along z, the change ∆Pz = −e/Acell would occur via the
gradual migration of the z̄(kx, ky) along the +ẑ direction,
with a relabelling of sheets required at the end of the
loop.
Now we again consider an adiabatic cycle in a 3D

insulator, but this time one that results in the pump-
ing of the CSA coupling, increasing θ by 2π times
the second Chern number C(2) defined earlier. This
corresponds to a pumping of Berry curvature, instead
of electric charge, along z during the adiabatic cycle.
For this purpose we define a Berry curvature on the
WCC sheets as Ωxy,ln,l′m(kx, ky) = i〈∂xWln|∂yWl′m〉 −
i〈∂yWln|∂xWl′m〉. The relation to the Berry curvature
in the Bloch representation is similar to that for A in
Eq. (5). The intrinsic AHC σyx of the crystal is just
given by integrating the trace of Ωxy in the Bloch rep-
resentation over the 3D BZ, and this is easily shown
to be equal to (e2/hc)

∑
n Cn where Cn is the Chern

number of the nth sheet in the home unit cell, given by
Cn = (2π)−1

∫
d2kΩxy,0n,0n. We shall exclude quantum

anomalous Hall insulators from our discussion here, so
we can assume that

∑
n Cn = 0, but importantly the

individual Cn can be nonzero.
We now address the central issue of this Letter, namely,

how to represent the CSA coupling θ in the HWF rep-
resentation. Starting from Eq. (2), this can be written
as

θ = θzΩ + θ∆xy (8)

where

θzΩ = −
1

2π

∫
d3kTr[AzΩxy] , (9)

θ∆xy = −
1

2π

∫
d3kTr[Ay∂zAx − iAz[Ax, Ay]] . (10)

Performing the kz integrals, these are expressed in the
HWF representation as

θzΩ = −
1

c

∫
d2k

∑
n

z̄n Ωxy,0n,0n , (11)

θ∆xy =
i

c

∫
d2k

∑
lmn

(z̄lm − z̄0n)Ax,0n,lmAy,lm,0n , (12)
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where z̄lm = lc+ z̄m. In deriving Eq. (12) we have used
that

c

2π

∫
dkzTr[Ay∂zAx] =

∑
l

∑
nm

(ilc)Ax,0n,lmAy,lm,0n .

(13)
Eqs. (8) and (11-12) constitute a major result of the
present work. [12]

Of primary concern to us here is the “Berry curvature
dipole” term θzΩ in Eq. (11), which describes the extent
to which concentrations of positive and negative Berry
curvature on the WCC sheets, given by Ωxy,0n,0n(kx, ky),
are displaced from one another along the ẑ direction as
given by z̄n(kx, ky). Note that θzΩ is shifted by −2πCn

if the choice of WCC sheets comprising the home unit
cell is changed so as to shift some z̄n by c. The θzΩ term
is therefore the one that has the 2π ambiguity, and we
shall see that it is responsible for the pumping of CSA
coupling. The second term θ∆xy, given by Eq. (12), is an
intersheet contribution in which the z-separation between
sheets at (kx, ky) is coupled to the off-diagonal (inter-
sheet) matrix elements of the Berry potentials. There
is no 2π ambiguity associated with this term, and as
we shall see, it typically remains small even when θ is
not. We regard it as a correction term that is needed for
quantitative accuracy but is not relevant to topological
considerations.

We now illustrate the concepts introduced above in
the context of a simple tight-binding model. Following
Essin et al.,[1] we start with the Fu-Kane-Mele (FKM)
model,[13] which is a four-band model of s orbitals on a
diamond lattice with spin-orbit interaction,

HFKM =
∑
<ij>

t(eij) c
†
icj + iλso

∑
≪ij≫

c†i s · (d
1
ij × d

2
ij)cj .

(14)
The first term is a sum over first-neighbor hoppings,
where eij is the bond vector, while the second term in-

volves second-neighbor hops in which vectors d
1,2
ij de-

scribe the two first-neighbor bonds that make up the
second-neighbor hop. We take the cubic lattice constant
to be unity. In the original FKM model t(eij) = t0 in-
dependent of hopping direction, but following Ref. 1 we
take t(eij) = t0(3 + δ) for the bond along (111) and t0
for the other three bonds. We set the first-neighbor and
spin-dependent second-neighbor hoppings to t0 = 1 and
λso = 1 respectively, and assume two bands are occupied.

The strong topological and trivial phases are sepa-
rated from each other by a band touching at the Γ point
when δ = 0. Again following Essin et al.[1] we add a
staggered Zeeman field h, and define an adiabatic loop
parametrized by δ(α) = m cos(α) and h(α) = m sin(α)
where α runs from 0 to 2π, such that the system remains
insulating on the loop and θ is pumped by 2π. The HWF
representation is constructed with ẑ along the (111) di-
rection.

FIG. 1. The two WCC sheets of the half-filled FKM
model, and one set of periodic images, at four stages α =
(0, 3π/4, π, 5π/4) along the parametric cycle (clockwise from
upper left). Blue and red colors show positive and negative
values of Berry curvature Ωz on the sheets. The Chern num-
bers associated with the individual WCC sheets are shown for
those cases where sheets do not touch.

The WCC sheets derived from the two occupied bands
in the FKM model are shown in Fig. 1, where one pair
of sheets and one copy of their periodic images along ẑ
are shown for some points around the adiabatic loop.[14]
The evolution of the Wannier sheet positions is plotted
in Figs. 2(a-b) at the four TRI points, namely at the
BZ center Γ and at the three equivalent M points, e.g.,
(π, π).

The system has TR symmetry at α=0 and π, where
the system is Z2-even and Z2-odd respectively, and where
the WCC sheets pair up at the four TRI-points due to
Kramers degeneracy.[3] In the normal phase at α=0 this
results in a pair of sheets connected by Dirac points at
all four TRI momenta, and each pair is well separated
from its neighbors along ẑ. As α increases, the Dirac
crossings are gapped and the sheets begin to separate.
At the three M points the separation between the pair
remains quite small, and the same sheets touch again at
α = π, as is obvious from Fig. 2(a). At the Γ point,
however, the sheets separate strongly and eventually re-
connect with their neighbors from the next unit cell along
ẑ when α=π. The swapping of partners at an odd num-
ber of the TRI points (here, only at Γ) is characteristic
of the strong topological (Z2-odd) phase at α=π. Note,
however, that the WCC sheets, taken together, have no
net displacement along the ẑ direction, so no charge is
pumped.

To see what happens to the CSA coupling θ during
this cycle, we inspect the Berry curvature Ωxy on the
sheets, represented by the color-scale shading in Figs. 1
and 2(a-b). We see that the behavior near the M points
is uninteresting; positive and negative Berry curvature
contributions separate slightly at first, but they then re-
verse and recross, and never give a large contribution to
θzΩ, as given by Eq. (11). Near Γ, however, the story is
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FIG. 2. (a-b) WCCs at (a) M and (b) Γ of the 2D BZ for the
FKM model as a function of the adiabatic loop parameter α.
Blue and red colors indicate positive and negative values of
Berry curvature respectively. (c) CSA coupling θ(α), and its
contributions θzΩ and θ∆xy, for the same adiabatic loop.

strikingly different. A negative (red) increment of Berry
curvature is transported along +ẑ while a positive (blue)
contribution is carried along −ẑ as α evolves from 0 to π.
For small and positive α we expect that the total Berry
curvature near Γ in the top and bottom sheets (at z̄2 and
z̄1) should be −π and π respectively, characteristic of a
weakly gapped Dirac point. Thus the contribution to
the Berry curvature dipole term θzΩ from the vicinity of
Γ, which is approximately π(z̄2(0, 0)− z̄1(0, 0))/c, grows
gradually as α increases and the sheets get further apart
at Γ. As α → π the separation between the sheets at Γ
approaches a full lattice constant c and the contribution
to θzΩ approaches π.

This expectation is confirmed in Fig. 2(c), where we
plot θ, and its contributions θzΩ and θ∆xy, vs. α. The
non-topological θ∆xy term is almost negligible every-
where around the adiabatic loop, and is not discussed
further. As α passes through π there is a Dirac touching
at Γ between sheet 2 in the home cell and sheet 1 in the
cell above, with a hand-off of −2π units of Berry curva-
ture (or a Chern number of −1) from the former to the
latter, with the concentration of Berry curvature near Γ
in band 2 switching from −π to π. A direct evaluation of
Eq. (11) would show θzΩ and θ dropping discontinuously
by 2π as α crosses through π, but we make use of the
gauge freedom to apply a 2π shift of θ to impose physical
continuity when drawing the curves in Fig. 2(c).

Here we have illustrated the behavior of just one model
system, and we have found that the pumping of θ by 2π
is accomplished by a series of touching events between
WCC sheets, such that one Chern number of Berry cur-
vature is handed off to the neighboring sheet with each
touching. But it is now clear in retrospect that any cy-

cle that pumps θ by 2π must involve such a sequence of

touching events. For, if these events did not occur, the
CSA coupling could not be passed along by a lattice vec-
tor during the cycle. Incidentally, this observation also
explains why a non-trivial θ pumping cycle is impossible
in a system with a single occupied band, since in this

case the WCC sheets are always separated by cẑ and can
never touch.

One can also consider the corresponding evolution of
the Berry curvatures and Chern transfers for finite slabs,
where the bulk of the slab undergoes the same cyclic evo-
lution. If the surface Hamiltonian could be constantly
readjusted so as to remain insulating, the net result at
the end of the cycle would be to change the surface AHC
by ±e2/h at the bottom and top surfaces of the slab re-
spectively. In the more common case that the surface
returns to its initial state at the end of the cycle, the
AHC must return to itself too, so the slab is topologi-
cally required to have a metallic surface phase over some
interval of α. During this α interval, the surface AHC
changes continuously with changing filling in such a way
as to contribute ∓e2/h by the time the surface band is
completely filled or depleted, removing the extra Chern
number pumped from the bulk. The existence of such
surface states can be an experimental signature charac-
terizing any adiabatic loop with non-zero second Chern
number.

In summary, we have demonstrated that the WCC
sheets as defined in the HWF representation, which had
previously been shown to be useful for identifying and
visualizing the topological properties of non-trivial insu-
lating phases, also provides an insightful characterization
of a non-trivial parametric loop characterized by a sec-
ond Chern number. By defining Berry connections and
curvatures associated with the WCC sheets, we have de-
rived a new formula for the CSA axion coupling θ as a
decomposition into a topological Berry curvature dipole
term and a non-topological correction term. In this kind
of adiabatic cycle it is not the charge, but the sheet Berry
curvature, that is pumped during the cycle. In our for-
mulation the 2π ambiguity of θ is readily evident when
some sheets have non-zero Chern numbers, in which case
a different assignment of sheets to the home unit cell
can shift θ by 2π, and the link to the surface anomalous
Hall conductivity becomes more direct. We also specu-
late that Eqs. (11-12) may provide a more efficient prac-
tical means of computing θ than those used previously,
since there is no need to establish a smooth gauge in the
3D Brillouin zone. In any case, we believe that our ex-
tended development of the HWF representation should
prove broadly useful in characterizing the adiabatic evo-
lution of topological materials and their magnetoelectric
properties.
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