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Energy loss in the transport of a beam of relativistic electrons in warm-dense aluminum is mea-
sured in the regime of ultra-high electron beam current density over 2×1011 A/cm2 (time-averaged).
The samples are heated by shock compression. Comparing to undriven cold-solid targets, the roles
of the different initial resistivity and of the transient resistivity (upon target heating during electron
transport) are directly observable in the experimental data, and reproduced by a comprehensive set
of simulations describing the hydrodynamics of the shock compression, and electron beam gener-
ation and transport. We measured a 19% increase in electron resistive energy loss in warm-dense
compared to cold-solid samples of identical areal mass.

PACS numbers:

Ultra-high intensity laser interactions with dense
targets stand out as an effective way to produce high-
current relativistic electron beams (REB). This regime
of electron sources has given rise to a multitude of appli-
cations this past decade, such as ion beam production,
coherent and incoherent XUV and X-ray emission, and
isochoric heating of solid targets to extreme tempera-
tures. The electron-driven fast ignition (FI) scenario in
inertial confinement fusion (ICF) [1] is one of the po-
tential application areas of such beams. In this scheme,
DT fusion is to be ignited by a REB generated by an
intense pulse (∼ 1020 − 1021 W.cm−2, ∼ 100 kJ, ∼ 10 ps)
interacting with the inner tip of a cone [2], re-entrant in
a compressed DT pellet, at stagnation. The electrons
should have a mean energy of 1 ≤ ε̄h ≤ 2 MeV adapted
for an efficient energy deposition in the ≈ 1 g/cm2 areal
density core. Only 20 kJ need to be deposited in the core
to trigger the reactions [3]. Yet, despite these seemingly
achievable criteria, a large controversy exists in the
community concerning the initial laser intensity required
to generate the REB [2, 4–8]. To bring that energy to
the core, and assess FI feasibility, it is fundamentally
important to understand the REB transport, at current
densities jh > 1011 A.cm−2, through warm, moderately
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over-dense, and highly resistive plasma, representative
of regions near the cone tip.
Energy losses of an electron beam propagating within a
material are commonly associated with inelastic colli-
sions with bound and free electrons, and plasma waves
[9]. These processes, well documented and described
in textbooks, are however insufficient at the extremely
high jh achieved in relativistic laser-plasma experiments,
where resistive losses induced by the neutralizing return
current, of density je, become important. Indeed, while
the rate of collisional energy loss by the electron beam
per unit volume is Ẇcoll ∝ ρjh, with ρ the material
density, by assuming a perfect current neutralization
je = −jh, the rate for the resistive energy loss is
Ẇres ' ηj2h, with η the material resistivity. This last
process, predicted theoretically [10] and by numerical
simulations [11], has been recently experimentally
evidenced in well-controlled cold-solid targets [12, 13]
- a feature not yet observed in the warm dense matter
regime. This lack of data is not only due to the small
number of experiments but also to the transient nature
of the process and the necessity of systematic, and often
indirect measurements of the electron beam and target
parameters. In addition, a hierarchy of codes is required
to assess the relevant observables.

This letter presents the first measurements of resistive
energy loss of a relativistic electron beam in warm-dense
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matter for current density up to j̄h ≈ 2 × 1011 A.cm−2.
The resistive energy losses were unraveled by com-
paratively characterizing REB transport in cold-solid
and in warm-compressed aluminum (Al) samples of
identical areal density (ρL). Al was chosen for being
the best modeled material in the warm dense matter
state [15]. The Al warm samples, obtained by ns laser-
generated planar shock-compression, reached a density
of ρ ∼ 5.4 g/cc with a temperature of T ∼ 3 eV behind
the shock front, close to the material Fermi temperature.
In these conditions, the resistivity is predicted to rise
by a factor of >15 compared to its cold-solid state
value [14, 15], and to produce a significant increase of
the REB resistive losses in warm samples. As the areal
density ρL is kept constant during the compression,
the REB collisional energy losses remain invariant
while the resistive losses change. The REB transport
efficiency shows a clear dependence on the sample
state, with a significant contribution from resistive
losses, peaking at the same level as collisional losses in
the Al compressed-warm targets. Benchmarked simu-
lations provide a detailed description of the transient
behavior of the Al resistivity upon REB-induced heating.

The experiment was carried out at the Lawrence
Livermore National Laboratory (USA) on the JLF-Titan
laser facility, using a dual laser beam configuration.
Samples were shock-compressed by a long pulse beam
(LP) on the rear surface. At a chosen delay, the target
front surface was irradiated by a short pulse beam (SP)
generating the REB propagating against the shock.
The λSP = 1.06µm, τSP = 0.7 ps full-width-at-half-
maximum (FWHM) SP was focused to a Gaussian-like
spot of 7µm diameter (FWHM), containing 40% of
the on-target 115 ± 30 J laser energy and yielding a
(2 ± 1) × 1020 W.cm−2 peak intensity. The SP pedestal
intensity contrast due to the amplified spontaneous
emission (ASE) was measured to be ∼ 10−7, 3 ns before
the main pulse arrival [16, 17]. The frequency doubled
LP (λLP = 0.53µm), with a 5 ns square temporal profile
and an on-target energy of 410± 9 J was focused onto a
875µm FWHM flat top spot by means of a phase zone
plate, yielding an intensity of (1.4± 0.3)× 1013 W.cm−2.
It generated homogeneous shock fronts ensuring pla-
nar compression over a radius much greater than the
REB radius. The given uncertainties are the stan-
dard deviations over the full set of laser shots. The
5× 5 mm2 surface multi-layer foil targets were composed
of Al[5µm] - Ag[5µm] - Al[L0] - Sn[10µm] - Cu[10µm] -
PP[15µm], where the central Al layer of variable
thickness (L0 = {20, 40, 60, 80}µm) is called Al-sample,
and a rear-side polypropylene (PP) layer used as an
ablator. The K-shell ionization fluorescence layers of Ag,
Sn and Cu were used to characterize the fast electron
source at the front side and at the rear of the Al-sample.
The delay between the laser pulses was set according
to the desired Al-sample state. For cold-solid Al, a
shorter delay was used, allowing the formation of a long

plasma, preventing the fast electron from recirculating
after their first transit through the K-shell tracers and
the Al-sample. In this configuration, the shock reaches
the Sn - Al-sample interface without compressing the
latter. For the warm-dense Al, a longer delay was
used, adjusted according to L0 and sufficient to allow
the shock to cross and practically fully compress the
Al-samples. The delays were determined by simulations
of the shock formation and propagation, performed with
the 2D radiative-hydrodynamic code CHIC [18] and
benchmarked by streaked measurements of the optical
emission caused by the shock breakout on the targets
front side. The two delay categories allowed respectively
to study REB transport in cold-solid Al (Te = 0.03 eV,
ρ0 = 2.7 g/cc) and in warm-dense Al (Te ∼ 3 eV and
ρ ∼ 2 ρ0, behind the shock front) as illustrated in the
axial profiles in Fig. 3-a).

The REB radial divergence versus target thickness was
inferred from Cu-Kα imaging with both a spherically
bent crystal imager [19] and a Kirkpatrick-Baez micro-
scope [20], yielding consistent results. The divergence of
the beam, defined by the rate of increase in measured
spot size versus distance, i.e. the slope of the beam edge,
was measured to be 19◦ half-angle, independent of the
sample state. Fast electron energy loss in the Al-samples
was evaluated from the ratio of Sn-Kα to Ag-Kα yield,
using an absolutely calibrated Cauchois-type hard X-ray
transmission spectrometer [21]. Fig. 1-a) shows the
data as a function of the Al-sample areal density (full
symbols) for (a) the absolute Sn-Kα yield and (b) the
Sn-Kα/Ag-Kα ratio. The former includes variations due
to the inherent shot-to-shot fluctuations of the laser
parameters, while the latter corrects for fluctuations
in the source electron flux and is roughly proportional
to the fraction of the fast electrons transmitted by the
Al-sample. In the case of warm samples, the ratio
has a steeper decrease against ρL compared to the
solid samples, showing a clear difference for the thicker
targets (ρL > 15.5 mg.cm−2). This behavior is the main
signature of extra, non-collisional, energy losses in the
warm samples.

To further understand the physics at play and to
estimate the electron stopping cross section, the data
were compared to integrated simulations. The REB
source was computed with the 2D particle-in-cell (PIC)
code LSP [22] modeling the SP laser interaction with a
200 × 200µm2 Al layer. The ASE-induced pre-plasma
exponential density profile, with a scale length set to
50µm, was measured in a previous experiment [16, 17].
The SP temporal profile was a 700 fs FWHM Gaussian
with a peak intensity of 1020 W.cm−2. The different REB
source characteristics were extracted at 5µm depth into
the target, with the 0-position corresponding to the ini-
tial solid-vacuum interface. The REB energy distribution
[gray curve on Fig. 2-a)] was averaged over the 2.4 ps du-
ration of the simulation and is well described over the
0.05 ≤ εh ≤ 140 MeV energy range by the following nor-
malized analytical expression:
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FIG. 1. (color online) (a) Measured (full symbols) and sim-
ulated (empty symbols) absolute Sn-Kα yields as a function
of the Al-sample areal density. Simulation results obtained
with ηlaser→e = 25% (the shaded area corresponds to ±5%
variations). (b) Measured and simulated Sn-Kα/Ag-Kα ratio
as a function of the Al-sample areal density.

f(εh) = exp
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− εh
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)
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The parameter values have been adjusted in order to
reproduce as best as possible the experimental data
upon REB transport, yielding ε0 = 20 keV, α = 1,
Th1 = 100 keV, and Th2 = 12.5 MeV [dashed red curve
in Fig. 2-a)]. The corresponding fast electron mean en-
ergy over the 0.05 ≤ εh ≤ 20 MeV range is ε̄h = 1 MeV.
The power law component of the electron spectrum, al-
ready observed in other kinetic simulations [23–26], sig-
nificantly impacts Kα emission and must be taken into
account to reproduce the experiment. This high sensi-
tivity to the low energy part of the electron spectrum
is due to the high collisional ionization rate of the inner
shells for energies around a 100 keV [see for example the
Sn K-shell ionization cross section [31], thin solid line in
Fig. 2-a)].

To further validate the used REB source spectrum, we
also set up at 45◦ from the target normal a X-ray spec-
trometer measuring in the 10 keV< EX < 3 MeV range,
relevant for the bremsstrahlung produced by the low en-
ergy part of the REB spectrum. The X-rays are detected
by differential transmission on a stack of 15 successive
metallic filters and 15 imaging plates (IP) [27]. The
de-convolved detected X-ray spectrum is of the shape
F (EX) = a. exp (−EX/T1) + b. exp (−EX/T2) with the
parameters a = (1.4 ± 0.6) × 104, T1 = (22 ± 2) keV,
b = (4±0.8)×103 and T2 = (240±40) keV [blue curve on
Fig. 2-b)]. The consistency of the analysis is confirmed by
Monte Carlo (MC) simulations of the spectrometer, us-
ing the MCNPX code [28]. Because the bremsstrahlung
emissions are not included in the hybrid code used to
calculate the REB resistive transport [29] (see further
below), the REB propagation in the targets, injected
with the energy distribution of Eq. 1, was also calcu-
lated by MC simulations: The generated bremsstrahlung

Detected X-ray 
spectrum

MC-transport X-ray
spectrum

a) b)

FIG. 2. (color online) a) REB spectrum obtained from the
PIC simulations (solid grey line) and its analytical fit (Eq. 1,
dashed red line) injected into hybrid transport simulations.
The Sn tracer K-shell ionization cross section is also repre-
sented (solid green line). b) Bremsstrahlung spectra results
from the MC simulations: experimental spectrum deduced
from matching the X-ray detection simulation to the dosime-
ter layer data (first step: blue solid line) compared to the spec-
trum generated during the fast electron propagation through
the target (second step: dashed red line).

emission at 45◦ agrees with the measured photon spec-
trum (dashed red curve), validating the considered REB
source. It is worth noting that T1 and T2 are of the order
of the temperature Th1 characterizing the lower energy
part of the REB spectrum. A permanent magnet spec-
trometer set up at 64◦ from the target normal measured
the energy distribution of electrons leaving the target in
the range of 1 to 10 MeV, measuring a Th ∼ 1.3 MeV
higher energy component, in very good agreement with
the electron spectrum at the rear side of the simulated
targets.

The REB transport through the multi-layer targets
was simulated with a 2D axis-symmetric hybrid code [29]
using, as initial density and temperature, the profiles ex-
tracted from the hydrodynamic simulations at the corre-
sponding SP injection time. We considered a laser energy
of 115 J and an adjustable absorption into the injected
REB ηlaser→e from 20 to 40% [30]. Transport simula-
tions were run up to 8 ps in a 300µm-radius simulation
box, with 1 fs and 0.25µm temporal and spatial resolu-
tions respectively. Electrical resistivity is computed us-
ing the Drude model η = meν/e

2ne, with ne the electron
density and ν the electron collision frequency calculated
with the Eidmann-Chimier model [14, 15], which takes
into account electron-phonon (e-ph), electron-electron (e-
e) and electron-ion (e-i) collisions according to the back-
ground density and temperature. A module based on
Hombourger’s cross sections [31] was used to calculate
Kα absolute yields and size for comparison with experi-
mental values.

The careful description of the energy, angular and spa-
tial distributions of the REB source, as inspected from
the PIC simulation results, resulted in a very good re-
production of the experimental Cu-Kα spot size as well
as the absolute Kα yields. Open symbols in Fig. 1-a)
show the simulation results for the Sn-Kα yield using
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ηlaser→e = 25%. The light blue shaded area indicates
the yields obtained for ±5% variation of this parameter.
The experimental Sn-Kα/Ag-Kα yield ratios as a func-
tion of the Al-sample areal density ρL [full symbols in
Fig. 1-b)] are nicely reproduced by the transport simula-
tions (open symbols, using ηlaser→e = 25%). As explained
above, the steeper ratio reduction in the compressed case
is unambiguously associated with an increase of resis-
tive energy losses in warm Al. This is obvious on the
simulation results, a bit less for the experimental points
but the effect of the different resistivity is quite clear for
the thickest target data. From this set of benchmarked
results, averaging over the simulation time and over a
50µm radius around the REB propagation axis, we esti-
mated the REB current density entering the Al-samples
to be j̄h ' 2.4× 1011 A.cm−2.

Fig. 3-b) presents 2D maps of collisional and resis-
tive energy losses per unit mass, time-integrated up to
t1 = 2.1 ps after REB injection time, for solid (top) and
compressed (bottom) targets, calculated with the hybrid
code for targets with L0 = 80µm. Comparing the two
cases, and focusing on the Al sample (delimited by the
vertical dashed lines) we clearly see that the collisional
losses against target depth do not change while the re-
sistive losses increase in terms of both yield and range.
This is related to higher resistivity in the regions be-
yond the shock front. While the collisional losses extend
over the entire target due to multiple diffusions, the re-
sistive losses are confined into a more restricted volume
around the REB propagation axis, where the current den-
sity is the highest. Fig. 4-a) shows the integration of
the energy losses over the samples, for the two sample
types, warm-dense (open symbols) and cold-solid (solid),
as a function of the areal density ρL. While the trends
for the collisional losses (squares) are, as expected, sim-
ilar, the resistive losses (triangles) become progressively
greater in warm samples compared to cold ones. Beyond
ρL ∼ 10.6 mg.cm−2, they saturate due to the decrease
of jh after a certain target depth. Whole beam average
collisional vs. resistive stopping cross sections taken at
ρL0 = 10.62 mg.cm−2 (solid) and ρL = 10.49 mg.cm−2

(compressed) yield 92± 17 vs. 67± 20 J.cm2.g−1 in cold-
solid Al and 92±17 vs. 80±20 J.cm2.g−1 in warm-dense
Al. By multiplying these results by the sample aver-
age density, and by normalizing to the number of fast
electrons at the beginning of the sample, the resistive
stopping powers in cold-solid and warm-compressed alu-
minum are 2.5 ± 0.7 and 5.4 ± 1 keV/µm respectively.
Fig. 4-b) presents the resistivity in cold-solid (squares)
and warm-compressed (circles) Al, as well as the cur-
rent density (triangles), averaged over the first 35µm of
the Al sample, plotted against time (and hence temper-
ature). One can see that the ratio of the resistivities
between warm-dense and cold-solid Al sample before the
propagation of the fast electron beam, equal to 6.2, is
clearly higher than the ratios of the given resistive stop-
ping cross sections (' 1.2) and of the resistive stopping
powers (' 2.1). The discrepancy highlights the time evo-

lution of the resistivity in both warm and cold samples
due to REB energy deposition. This non-monotonic be-
havior is the signature of the transition between a regime
dominated successively by e-ph, e-e and e-i collisions in
the solid case, and successively by e-e and e-i collisions
in the compressed case [32]. The heating time needed
to reach the Spitzer regime is considerably smaller than
the REB duration for the smaller ρL samples, explaining
why in this case [see Figs. 1-b) and 4-a)] the effects of
higher initial η are less visible.

In conclusion, we characterized the collisional and re-
sistive energy losses of REB transport at current densi-
ties exceeding 1011 A.cm−2 in both cold-solid and warm-
dense Al at nearly twice the solid density. The absolute
Kα yield measurements linked to the total number of
transported fast electrons are reproduced by a detailed
simulation suite. The obtained values of the resistive
stopping cross section and stopping power corroborate
our previous analytical and numerical predictions [32], in-
creasing respectively by 19% and by 116% in warm-dense
Al. At lower REB current density, j̄h ≈ 8× 1010 A.cm−2

(time-average), the energy losses were dominated by the
direct collisions with the background material [26, 32].
Our data and simulations elucidate the role of resistive
losses in REB transport, linked to the target resistivity,
both the initial difference due to shock-induced heating
yielding higher e-e collision frequency, and its ps-scale
transient behavior during REB energy deposition. The
first hundreds of fs of transport can indeed play a deter-
minant role on the generation of resistive magnetic fields,
partially conditioning the subsequent beam profile char-
acteristics [34, 35]. The transition to warm dense states
is FI-relevant because of the need to understand REB
transport in high resistivity regions such as the cone tip
material and just beyond it and to benchmark transport
simulations which can be extended to full-scale FI con-
ditions.
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FIG. 3. (color online) (a) Hydrodynamic simulation results for the density and temperature axis profiles at the SP injection
time (focused on the left hand side), in the Al-sample solid (top) and compressed (bottom) cases. (b) Corresponding REB
transport simulation results of the time-integrated collisional (left hand-side plots) and resistive (right hand-side plots) REB
energy loss per unit mass (in logarithmic scale), extracted 2.1 ps after REB injection. All the figures correspond to the thickest
targets (L0 = 80µm).
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FIG. 4. (color online) Results from the hybrid transport sim-
ulations assuming ηlaser→e = 25%: (a) Time-integrated colli-
sional (squares) and resistive (triangles) energy losses in solid
(full symbols) and compressed (open symbols) Al-samples,
as a function of their areal density ρL. (b) Time evolution
of the resistivity of cold-solid (blue squares) and of warm-
compressed (circles) Al samples, as well as the current beam
density (triangles) averaged over a thickness of L = 35 µm
and a radius of 25 µm around REB propagation axis, calcu-
lated from hybrid simulations.
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