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Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic
reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the
anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter
o and approaches the speed of light when o > O(100), leading to an enhanced reconnection rate.
In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking
the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that
accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results
demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of
proper density, remains ~ 0.1 in both the non-relativistic and relativistic limits.

PACS numbers: 52.27.Ny, 52.35.Vd, 98.54.Cm, 98.70.Rz

Introduction— Magnetic reconnection is a process that
changes the topology of magnetic fields and often leads
to an explosive release of magnetic energy in nature. It is
thought to play a key role in many energetic phenomena
in space, laboratory and astrophysical plasmas [1]. In
recent years, relativistic reconnection has attracted in-
creased attention for its potential of dissipating the mag-
netic energy and producing high-energy cosmic rays and
emissions in magnetically dominated astrophysical sys-
tems [2], such as pulsar winds [3-5], gamma-ray bursts
[6-8] and jets from active galactic nuclei [9-11]. However,
many of the key properties of magnetic reconnection in
the relativistic regime remain poorly understood. While
early work found the rate of relativistic magnetic recon-
nection may increase compared to the nonrelativistic case
due to the enhanced inflow arising from the Lorentz con-
traction of plasma passing through the diffusion region
[12, 13], it was later pointed out that within a steady-
state Sweet-Parker model [14, 15] the thermal pressure
within the current sheet will constrain the outflow to
mildly relativistic conditions where the Lorentz contrac-
tion is negligible [16], and a relativistic inflow is therefore
impossible. Recently, the role of temperature anisotropy
[17], inflow plasma pressure [18], two-fluid [18], inertia
effects [19] and mass ratio [20] have been considered. All
existing theories are generalizations of the steady-state
Sweet-Parker or Petschek-type [21] models, which do not
account for the mechanism that localizes the diffusion re-
gion and determines the reconnection rate in collisionless
plasmas. Meanwhile, a range of reconnection rates are
reported in computational works with different simula-
tion models and normalization definitions [18, 20, 22-25].
However, the scaling of the rate has yet to be determined
and the kinetic physics of the diffusion region is poorly
understood in the relativistic limit.

In this work, a series of two-dimensional (2D) full
particle-in-cell (PIC) simulations have been performed to
understand the properties of reconnection in the magneti-

cally dominated regime. It has been argued that electron-
positron pairs are relevant in highly energetic astrophys-
ical environment, such as pulsar winds [4, 26] and extra-
galactic jets [27], hence in this Letter we limit our study
to mass ratio m;/m. = 1. The magnetization parameter
can be defined as the ratio of the magnetic energy den-
sity to the plasma energy density, o = B?/(47w) with
enthalpy w = 2n'mc?+[I'/(I' — 1)]P’. Here T is the ratio
of specific heats and P' = n/(T/ + T},) the plasma ther-
mal pressure in the rest frame. The shear Alfvén speed
is Va = clo/(1 + 0)]"/? [18, 28-30]. In this Letter, the
primed quantities are measured in the fluid rest (proper)
frame, while the unprimed quantities are measured in the
simulation frame unless otherwise specified. As pointed
out in Ref. [16], if a simple pressure balance P’ ~ B2/8r
is satisfied across a steady-state Sweet-Parker layer, this
will constrain the effective o ~ O(1), and thus restrict
the inflow speed V;,, < c¢. However, we demonstrate the
development of relativistic inflows when the upstream
o > 0O(100) (for the first time) in fully kinetic simula-
tions. A simple model based on the underlying idea of
Blackman and Field [12] is presented to explain the scal-
ing of the inflow speed and normalized reconnection rate.
It is well known that the normalized collisionless recon-
nection rate, R = V;;,/Vaz ~ 0.1, in the non-relativistic
limit can be estimated by the aspect ratio of the diffusion
region, but the precise physics that determines this value
remains mysterious [31]. Here Vy, is the Alfvén wave
velocity in the outflow direction. Interestingly, the simu-
lation results in this study suggest that this aspect ratio
(modified by the compression factor of proper density at
the inflow and outflow) of ~ 0.1 persists in the relativistic
regime. In addition, we analyze the relativistic general-
ization of Ohm’s law [32], and identify the importance of
the pressure tensor and the time-derivative of the inertial
term in breaking the frozen-in condition.

Simulation setup— The majority of simulations in this
letter start from a relativistic Harris sheet [22, 33-35].



The initial magnetic field B = Bytanh(z/\)x + Byy cor-
responds to a layer of half-thickness A with a shear an-
gle ¢ = 2tan~'(By/B,). Each species has a distribution
fn o< sech? (z/X)exp[—va(yrmc® +mVyu,)/T'] in the sim-
ulation frame, which is a component with a peak density
ng, and temperature T’ boosted by a drift velocity £V in
the y-direction for positrons and electrons, respectively.
Here u = v is the spacelike components of 4-velocity,
v = 1/[1 = (v/c)?]'/? is the Lorentz factor of a par-
ticle, and v4 = 1/[1 — (Vg/c)?]"/2. The drift velocity
is determined by Ampére’s law c¢By/(4n)) = 2evangVy.
The temperature is determined by the pressure balance
B2/(87) = 2n{T’. The resulting density in the simula-
tion frame is ng = y4ng. In addition, a non-drifting back-
ground component f;, oc exp(—yrmc?/Ty) with a uniform
density ny is included. The simulations are performed us-
ing VPIC [36], which solves the fully relativistic dynamics
of particles and electromagnetic fields. Densities are nor-
malized by the initial background density ny, time is nor-
malized by the plasma frequency wy. = (4npe? /me)"/?,
velocities are normalized by the light speed ¢, and spatial
scales are normalized by the inertia length d. = ¢/wp..
Although commonly used, the relativistic Harris sheet
may not be generic. To test the sensitivity of our re-
sults to the initial sheet equilibrium, a force-free config-
uration [25, 37] was also included, with magnetic profile
B = Bytanh(z/\)% + [BZ + B2sech(z/)\)]/2y, and uni-
form density and temperature. Particles in the central
sheet have a net drift V,, = —V, to satisfy Ampére’s
law. All simulations use 100 — 200 particles per cell for
each species (supplement D shows a convergence study).
The boundary conditions are periodic in the x-direction,
while in the z-direction the boundary conditions are con-
ducting for fields and reflecting for particles. A local-
ized perturbation with amplitude B, = 0.03B; is used
to induce a dominant x-line near the center of simula-
tion domain. The simulation parameters for the var-
ious runs considered in this Letter are summarized in
Table 1. Our primary focus in the following section
is the case Harris-4 which illustrates the dynamics in
the transition to the limit with relativistic inflows (i.e.,
Vin & ¢). The domain size is L, x L, = 384d, x 384d,
with 3072 x 6144 cells. The half-thickness of the initial
sheet is A = de, ny = nf), Ty/mc* = 0.5, By = 0 and
Wpe/Qee = 0.05 where Q.. = eBy/(m.c) is the cyclotron
frequency. The upstream magnetization parameter based
on the reconnecting component is o, = B2/(4rw) =
(Qee/wpe)?/{2[1 + (T/(T = 1))(T/mc?)]}, which is 88.9
with I' = 5/3. For cases with T}, /mc? > 1 in Table 1, we
use I' = 4/3 [38, 39].

Simulation results— Fig. 1(a) shows the structure of
current sheet in the nonlinear stage, where the current
density concentrates within a layer with a half-thickness
~ d.. This thickness appears to be independent of the
initial sheet thickness, and scales with the inertial length
based on the asymptotic background density (np). As
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FIG. 1: Results from case Harris-4 (¢ = o, = 88.9) during the
fully nonlinear phase at 566.4/wye showing (a) the electron
out-of-plane speed Ve, (b) outflow speed V., with cut at
z = 0, (c) inflow speed V.. with cut at z = —3.5d., (d) a
closeup showing the non-ideal electric field Ey + (Ve X B)y
inside the green-dashed box depicted in (c). The non-ideal
electric field is positive in between the horizontal white curves.
Black contours are flux surfaces in (a)-(d).

shown in Fig. 1(b), the outflow velocity approaches ~ c,
while in Fig. 1(c) the peak inflow speed is ~ 0.65c.
Note that these relativistic inflows also penetrate deeply
across the magnetic separatrix into the d.-scale sheet
in the downstream region (|z| ~ 50d.). In addition,
the simulation shows a rapid growth of secondary tear-
ing modes, not only around the major x-line, but also
along the concentrated current sheet that extends into
the outflow exhausts. Interestingly, the secondary tear-
ing mode appears considerably shorter spatially in com-
parison with those in the non-relativistic regime. As
shown in the blow-up (Fig. 1(d)), a magnetic island
at (r ~ —2d.,z = 0) is immersed inside the region
where the frozen-in condition is broken, and it has a
size ~ 3d. X 2d., implying that the secondary tearing
mode grows for wave vectors k,0 > 1. Here 0 is the
half-thickness of the intense nonlinear current layer. In
contrast, the initial tearing mode based on the relativis-
tic Harris equilibrium is still constrained by kA < 1
(i.e., from relativistic energy principle) [40], as in the
non-relativistic limit. A temperature anisotropy [41, 42]



or the velocity shear associated with the outflow jet [43—
45] may change the stability criterion, however, to resolve
this issue in the relativistic regime is beyond the scope
of this Letter. Fig. 1(d) shows that the non-ideal electric
field is also concentrated in a region |z| < d.. However,
the frozen-in condition starts to fail inside a wider layer in
between the horizontal white curves, which may be due to
a larger effective inertial scale based on a smaller density
at |z| 2 d. (see the density cut in Fig. 2(a)). Fig. 2(a)
shows that the inflow velocity V,, reaches its maximum
~ 0.65¢ at the location where frozen-in starts to fail (i.e.,
marked by the green circle on the E, + (V. x B), curve).
The profile of V,, is rather flat in between this location
and z = d.. Motivated by this observation, we use the lo-
cal magnetic field B, ,, at this location (z ~ 3.5d.) to nor-
malize the reconnection electric field E,, and the normal-
ized electric field traces the evolution of the peak inflow
velocity well (Fig. 2(b)), as expected. Since in this rela-
tivistic regime V4, = ¢, these two quantities are equiv-
alent measurements of the normalized reconnection rate
as discussed in the following section. The original peak
density at the center of the sheet is ng+mn, = v4+1 = 11.
This peak density drops significantly from 11 to ~ 2 and
the density along the symmetry line (z = 0) remains
~ 2 — 4, except inside secondary islands. The density
ratio between the region immediately upstream to the
x-line is ~ 2.5/0.3 = 8.3. These numbers will be used
to estimate the compression factor in the following sec-
tion. Per Ampere’s law, the density changes inside this
d.-scale layer require a reduction of the local magnetic
field since the motion of the current carrier is limited by
the speed of light [46].

To examine the mechanism of flux breaking, we em-
ploy the relativistic <generaulizaﬁuion of Ohm’s law E +
VexB+(1/ene)V - P. 4+ (m./e)(0;U. + V- VU,) = 0.
Here U = (1/n) [ d3uuf, and the fluid velocity is V =
(1/n) [dPuvf. The pressure tensor, P = [ dPuvuf —
nVU, defined in this manner reduces to the standard
definition in the non-relativistic regime [32]. Each term
along the vertical cut in Fig. 1(d) is plotted in Fig. 2(c).
There are strong oscillations in both V ~I<5>e and V.-VU,,
which largely cancel each other. In comparison, the mag-
nitude of the non-ideal electric field E, + (V. x B), is
much smaller. In Fig. 2(d), we examine the region around
the neutral point, which demonstrates that V.-VU, van-
ishes at z = 0 since the neutral point coincides with the
stagnation point in this sym<_r>netric configuration. The
thermal pressure term, V - P., balances the non-ideal
electric field at the x-line while the time-derivative of
the inertia 9;U, remains small at this time [32], consis-
tent with the study in the non-relativistic limit [47-50].
However, the intense current layer is strongly unstable to
secondary tearing modes, similar to the non-relativistic
limit [51]. The time-derivative of inertia 0;U. becomes
finite positive when the d.-scale current layer extends in
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FIG. 2: In (a), ne, Ey+ (Ve xB)y and |Ve,| along the vertical
cut shown in Fig. 1(d). |Ve.| is scaled by the right axis. The
green circle marks the location where the frozen-in condition
starts to fail; In (b), the evolution of the normalized reconnec-
tion electric field Ey/Bg,. and the peak V. near the major
x-line at min(A,) along z = 0. Here A, is the y-component
of vector potential; In (c), quantities of Ohm’s law along the
vertical cut shown in Fig. 1(d); In (d), the blow-up of (c) near
the magnetic neutral point.

length, and 0; U, becomes finite negative (i.e., contribut-
ing to reconnection) when a secondary tearing starts to
emerge in a sufficiently long layer (supplement B).
Simple model- While previous theories [12, 13, 16, 19]
generalize the Sweet-Parker [14, 15] or Petschek’s [21]
models into the relativistic regime, here we simply an-
alyze the conservation of mass including the influence
of the Lorentz contraction over a control-volume of size

L x4,
‘/zn'ann;nL = Vout')/outn:)uté- (1)

Here the subscript “in” and “out” indicate the inflowing
and outflowing plasmas, respectively. Given a magnetic
shear angle, the outflow is limited by the upstream Alfven
wave velocity projected into the x-direction [31],
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Vout = Vaz = ¢ (2)
Here the upstream magnetization parameter is o =
0y + 04 with 0, = B2 /(87w) accounting for the contri-
bution from the guide field. The effective Lorentz factor
based on the bulk flows is Yeur = 1/[1 — (Vour/c)?]}/? =
[(1 4+ 0)/(1 + o )I"? and 7in = {(1 + o)/l + 0 -
Uw(‘/in/VAm)2H1/2-

Working through the algebra, the peak inflow velocity
can be determined with only one free parameter, r,//L,

Vin _ I O 3)
c "L \/1+0'g+(Tn/6/L)2O'I’
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FIG. 3: Scaling of the inflow velocity V;»/c and the normal-
ized reconnection rate R as a function of o, for cases with
By, = 0 in the left; as a function of By/By for cases with
o, = 88.9 in the right. Diamonds are measurements of runs
in Table 1, green-dashed curves are predictions based on dif-
ferent value of r,,/§/L as marked on the plots.

where r,, = nl . /n., is the proper density ratio of the
outflow to inflow. The compression factor is
Nout 140
— , 4
Nin " \/1 + 04+ (rpd/L)?0, ()

and the normalized reconnection rate is

_ Vin é 1+o0
k= Ve (Tn/L) \/1 + 04+ (rpd/L)30, (5)

Note that R differs from V;,,/c by a factor ¢/Va,. From
the frozen-in condition, the normalized rate can also be
written as R = (¢/Vaz)Ey/By . In the limit of Va, — ¢,
then R ~ V,,/c ~ E, /By, as shown in Fig. 2(b).

With the assumption of r,/6/L = 0.1, as in the non-
relativistic limit, Egs. (3) and (5) immediately give
R ~ Vi, /e = 0.69, consistent with the observed values for
the case discussed. By comparing the measured compres-
sion factor ~ 8.3 in Fig. 2(a) and noyt /N = 6.97, from
Eq (4), this implies that r,, ~ O(1) and therefore the as-
pect ratio §/L ~ O(0.1). The aspect ratio of the intense
E,+(V.xB), layer shown in Fig. 2(d) seems to be con-
sistent with this idea, however, a definite measurement
is difficult because of time-dependency (more in supple-
ment C). To further test these predictions, a series of runs
were performed over a wide range of parameters (listed
in Table 1). The measurement of V;,, /c and R are shown
in Fig. 3 as diamonds, which agree closely with the pre-
dicted scaling based on r,,/6/L = 0.1. This suggests that
the modified aspect ratio of the diffusion region persists
during the transition from the non-relativistic to strongly
relativistic regime. With a larger o,, both the outflow
and inflow speeds become closer to the speed of light.
For anti-parallel initial conditions (i.e., o4, = 0), both
Vin/c and R approach unity only when o, > O(100),
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as shown in Fig. 3 (a)-(b), a condition obtained by de-
manding (r,/6/L)%0, = 0.016, > 1 in the denominator
of Eq. (3) and (5). On the other hand, with a guide field
By /By 2 O(1), the outflow speed (Eq.(2)) becomes non-
relativistic, the Lorentz contraction becomes negligible
and the reconnection rate therefore goes back to ~ 0.1
as shown in Fig. 3(d). To test the dependence on the
choice of initial conditions, we have also performed an
additional series of simulations using a force-free current
sheet for initial condition [25]. The final states are simi-
lar to those of initial Harris sheets and the measurement
shown as blue diamonds in Fig. 3(a)-(b) follow the same
trend, which demonstrates that the scaling in the nonlin-
ear stage is determined solely by the upstream condition.
Our model appears to explain the scaling of the normal-
ized rate observed in two-fluid simulations of Zenitani et.
al. [18] as well. Unfortunately, due to the complexity of
evolution in the nonlinear phase, we are not able to pre-
dict the reconnection rate normalized by the far upstream
reconnecting component, which approaches a maximum
of ~ 0.3 for cases with o, ~ O(500) in the present study.

Discussion— During the initial evolution of Harris-type
current sheets, the pressure balance argument proposed
in Ref. [16] restricts the inflow to V;, < ¢. However,
at later times there are a variety of features which may
break this argument. Firstly, the repeated formation of
secondary plasmoids makes the diffusion region highly
time-dependent. Secondly, the current density inside
each of these plasmoids is much stronger than the cur-
rent density within the diffusion regions between the plas-
moids. This redistribution of current alters the structure
of the reconnection layer and leads to strong variations
in the reconnecting component of the upstream magnetic
field. As a result, the plasma pressure and density around
the x-line drop significantly from the initial sheet value
(see Supplement A for pressure balance). This fact may
reduce the impediment that slows the Alfvénic outflows.
For cases with a higher upstream o, the initial sheet com-
ponent is denser and hotter. The system takes a longer
time to deplete this sheet component and develop rela-
tivistic inflows, as suggested by the comparison of the
time-scale between Harris-3 and 5 cases in Table 1.

In summary, a simple theory based on the Lorentz con-
traction [12] and the assumption of a universal aspect
ratio (~ 0.1) of the diffusion region provides an expla-
nation for the observed relativistic inflows and the en-
hanced normalized reconnection rate. While the present
letter was limited to 2D simulations, recent 3D simula-
tions demonstrate similar relativistic inflows in spite of
the development of kink instabilities [52]. These results
may be important for understanding particle acceleration
[25, 53], the dissipation of strong magnetic field in high-
energy astrophysical systems, such as the “o-problem”
in the Crab Nebula [33], and the destruction of strong
magnetic field near magnetars [6] and black holes [9].
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TABLE I: Paramters of Runs
Harris 1 2 3 4 5 6 7

BB, 0O 0 0 0 0 02 05 1
mp/mp 1 025 1 1 1 1 1 1

Ty/mc* 2.5 25 05 05 05 05 0.5 0.5
Wpe/Qee 0.1 0.05 0.1 0.05 0.02 0.05 0.05 0.05

o 4.5 18.2 22.2 88.9 555.6 88.9 88.9 88.9
timexwpe” 200 100 250 500 1000 400 350 300

Force-Free 1 2 3 4 5 6 7
By/Bo 0 0 0 0 0 0 0
Tz,/mc2 0.35 0.36 0.36 0.36 0.36 0.36 0.36
wpe/Qee 1.6 0.8 0.4 02 0.1 0.05 0.025

Oz 0.1 04 16 6.6 26.3 105.3 421

“the time when V;,, reaches a steady high value
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