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The onset of hyperons in the core of neutron stars and the consequent softening of the equation
of state have been questioned for a long time. Controversial theoretical predictions and the recent
astrophysical observations are the grounds for the so-called hyperon puzzle. We calculate the equation
of state and the mass-radius relation of an infinite systems of neutrons and Λ particles by using
the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon
interaction plays a fundamental role in the softening of the equation of state and for the consequent
reduction of the predicted maximum mass. We have considered two different models of three-
body force that successfully describe the binding energy of medium mass hypernuclei. Our results
indicate that they give dramatically different results on the maximum mass of neutron stars, not
necessarily incompatible with the recent observation of very massive neutron stars. We conclude
that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the
role of hyperons in neutron stars.

PACS numbers: 26.60.Kp, 21.65.Cd, 13.75.Ev

In their pioneering work, Ambartsumyan and Saakyan
reported the first theoretical indication for the appear-
ance of hyperons in the core of a neutron star (NS) [1].
In terrestrial conditions hyperons are unstable and decay
into nucleons through weak interactions. On the con-
trary, in the degenerate dense matter forming the inner
core of a NS, Pauli blocking prevents hyperons from de-
caying by limiting the phase space available to nucleons.
When the nucleon chemical potential is large enough, the
creation of hyperons from nucleons is energetically favor-
able. This leads to a reduction of the Fermi pressure
exerted by the baryons and, as a consequence, to a soft-
ening of the equation of state (EoS) and to a reduction
of the predicted maximum mass.

Currently there is no general agreement (even quali-
tative) among the predicted results for the EoS and the
maximum mass of a NS including hyperons. Some of the
standard nuclear physics many-body approaches, such as
Hartree-Fock [2, 3], Brueckner-Hartree-Fock [4, 5] or ex-
tended Quark Mean Field model [6], predict the appear-
ance of hyperons at around (2 − 3)ρ0, ρ0 = 0.16 fm−3,
and a strong softening of EoS, implying a sizable reduc-
tion of the maximum mass. On the other hand, other
approaches like relativistic Hartree-Fock [7, 8], Relativis-
tic Mean Field models [9–14] or Quantum HadroDynam-
ics [15] indicate much weaker effects as a consequence of
the presence of strange baryons in the core of a NS. It
should be noted that several of the parameters entering
these models can not be fully constrained by the available
experimental data.

The value of about 1.4M� for the maximum mass of a
NS, inferred from neutron star mass determinations [16],
was generally considered the canonical limit. The mea-
surements of the large mass values of the millisecond pul-
sars PSR J1903+0327 (1.67(2)M�) [17] and in particular

PSR J1614-2230 (1.97(4)M�) [18] and PSR J0348+0432
(2.01(4)M�) [19] suggest a stiff EoS. Other NS observa-
tions of masses and radii seem to disfavor very soft EoS
of neutron star matter [20–23]. This seems to contra-
dict the appearance of strange baryons in high-density
matter, at least according to nonrelativistic many-body
approaches.

In the last years new models compatible with the recent
observations have been proposed. Current astrophysical
and laboratory data have been used as constraints for a
hypernuclear Density Functional Theory [24]. The phase
transition to confined or deconfined quark matter has
been investigated by several authors [25–28]. More exotic
EoSs, including hyperons and antikaon condensate, have
been also formulated, as reported for instance in Ref. [29].
Evidence for the need of a universal many-baryons repul-
sion has been suggested [30, 31] and employed in nuclear
and hypernuclear matter calculations [32, 33]. However,
many inconsistencies still remain. The solution to this
problem, known as hyperon puzzle, is still far from un-
derstood.

In this Letter we present the first Quantum Monte
Carlo analysis of infinite matter composed of neutrons
and Λ particles. In Refs. [34, 35] it has been shown
that within a phenomenological approach similar to the
construction of the Argonne-Illinois nucleon-nucleon in-
teraction, a repulsive three-body hyperon-nucleon force
is needed to reproduce the ground state properties of
medium-light Λ hypernuclei. The repulsive three-body
force dramatically affects the EoS, and the inclusion of
Λ particles in neutron matter does not necessary pro-
duce a NS with maximum mass that is incompatible
with recent observations. In our calculation the pres-
ence of hyperons other than the Λ has not been investi-
gated. Their interaction with the neutrons is even less
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constrained than the Λ-nucleon one. Moreover, as our
results clearly show that different three-body forces give
very different EoS, we stress the fact that more con-
straints on the hyperon-neutron force are needed before
drawing any conclusion on the role played by hyperons
in neutron stars.

Within nonrelativistic many-body approaches, hyper-
neutron matter (HNM) can be described in terms of point
like neutrons and lambdas, with masses mn and mΛ, re-
spectively, whose dynamics are dictated by the Hamilto-
nian

H =
∑
i

p2
i

2mn
+
∑
λ

p2
λ

2mΛ
+
∑
i<j

vij

+
∑
i<j<k

vijk +
∑
λi

vλi +
∑
λ,i<j

vλij , (1)

where we use i and j to indicate nucleons, and λ to in-
dicate Λ particles. In our calculation the two-nucleon
interaction vij is the Argonne V8’ (AV8’) potential [36],
that is a reprojection of the more sophisticated Argonne
AV18 [37], but is simpler to be included in our calcula-
tion. It gives the largest contributions to the nucleon-
nucleon interaction, moderately more attractive than
AV18 in light nuclei [38] but very similar to AV18 in
neutron drops [39]. The vijk is the Urbana IX (UIX)
three-body potential, that was originally fitted to the tri-
ton and α particle binding energies and to reproduce the
empirical saturation density of nuclear matter when used
with AV18 [40]. The AV8’+UIX Hamiltonian has been
extensively used to investigate properties of neutron mat-
ter and neutron stars (see for instance Refs. [20, 41, 42]).

For the hyperon sector, we adopted the phenomenolog-
ical hyperon-nucleon potential that was first introduced
by Bodmer, Usmani and Carlson in a similar fashion to
the Argonne and Urbana interactions [43]. It has been
employed in several calculations of light hypernuclei [44–
50] and, more recently, to study the structure of light
and medium mass Λ hypernuclei [34, 35]. The two-body
ΛN interaction, vλi, includes central and spin-spin com-
ponents and it has been fitted on the available hyperon-
nucleon scattering data. A charge symmetry breaking
term was introduced in order to describe the energy split-
ting in the mirror Λ hypernuclei for A = 4 [34, 46]. The
three-body ΛNN force, vλij , includes contributions com-
ing from P - and S-wave 2π exchange plus a phenomeno-
logical repulsive term. In this work we have considered
two different parametrizations of the ΛNN force.

The authors of Ref. [48] reported a parametrization,
hereafter referred to as parametrization (I), that simul-
taneously reproduces the hyperon separation energy of
5
ΛHe and 17

ΛO obtained using variational Monte Carlo
techniques. In Ref. [34] a diffusion Monte Carlo study
of a wide range of Λ hypernuclei up to A = 91 has been
performed. Within that framework, additional repulsion
has been included in order to satisfactory reproduce the

experimental hyperon separation energies. We refer to
this model of ΛNN interaction as parametrization (II).

No ΛΛ potential has been included in the calculation.
Its determination is limited by the fact that ΛΛ scat-
tering data are not available and experimental informa-
tion about double Λ hypernuclei are scarce. The most
advanced theoretical works discussing ΛΛ force [51, 52],
show that it is indeed rather weak. Hence, its effect is
believed to be negligible for the purpose of this work.
Self-bound multistrange systems have been investigated
within the Relativistic Mean Field framework [53–55].
However, hyperons other than Λ have not been taken into
account in the present study due to the lack of potential
models suitable for Quantum Monte Carlo calculations.

To compute the EoS of HNM we employed the auxil-
iary field diffusion Monte Carlo (AFDMC) algorithm [56],
which has been successfully applied to investigate prop-
erties of pure neutron matter (PNM) [42, 57–60]. Within
AFDMC, the solution of the many-body Schrödinger
equation is obtained by enhancing the ground-state com-
ponent of the starting trial wave function using the
imaginary-time projection technique. In order to effi-
ciently deal with spin-isospin dependent Hamiltonians,
the Hubbard-Stratonovich transformation is applied to
the imaginary time propagator. This procedure reduces
the dependence of spin-isospin operators from quadratic
to linear, lowering the computational cost of the calcu-
lation from exponential to polynomial in the number of
particles allowing for the study of many-nucleon systems.

The extension of AFDMC to finite hypernuclear sys-
tems has been discussed in detail in Ref. [34]. Following
the same line, we have further developed the algorithm to
deal with infinite hyperneutron matter. The PNM trial
wave function has been extended by including a Slater de-
terminant of plane waves and two-component spinors for
the Λ particles. The propagation in imaginary time now
involves the sampling of the coordinates and the rota-
tion of the spinors induced by the Hubbard-Stratonovich
transformation for both neutrons and hyperons. The
Fermion sign problem is controlled via the constrained-
path prescription [59] with a straightforward extension
to the enlarged hyperon-nucleon space. The expectation
values are evaluated as in the standard AFDMC method,
as reported in Ref. [34].

Hyperneutron matter is composed of neutrons and a
fraction x = ρΛ/ρ of Λ hyperons, where ρ = ρn + ρΛ

is the total baryon density of the system, ρn = (1 −
x)ρ and ρΛ = xρ are the neutron and hyperon densities,
respectively. The energy per particle can be written as:

EHNM(ρ, x) =
[
EPNM((1− x)ρ) +mn

]
(1− x)

+
[
EPΛM(xρ) +mΛ

]
x+ f(ρ, x) . (2)

To deal with the mass difference ∆m ' 176 MeV between
neutrons and lambdas the rest energy is explicitly taken
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into account. The energy per particle of PNM EPNM has
been calculated within AFDMC [41, 42] and it reads

EPNM(ρn) = a

(
ρn
ρ0

)α
+ b

(
ρn
ρ0

)β
, (3)

where the parameters a, α, b and β are reported in Tab. I.

Table I. Fitting parameters for the neutron matter EoS of
Eq. (3) [41].

a [MeV] α b [MeV] β

13.4(1) 0.514(3) 5.62(5) 2.436(5)

We parametrized the energy of pure lambda mat-
ter EPΛM with the Fermi gas energy of non-interacting
Λ particles. Such formulation is suggested by the fact
that in the Hamiltonian of Eq. (1) there is no ΛΛ poten-
tial. The reason for parametrizing the energy per particle
of hyperneutron matter as in Eq. (2) lies in the fact that,
within AFDMC, EHNM(ρ, x) can be easily evaluated only
for a discrete set of x values. They correspond to dif-
ferent number of neutrons (Nn = 66, 54, 38) and hyper-
ons (NΛ = 1, 2, 14) in the simulation box giving momen-
tum closed shells. Hence, the function f(ρ, x) provides
an analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (ρ, x) domain that we have con-
sidered. Corrections for the finite-size effects due to the
interaction are included as described in Ref. [60] for both
nucleon-nucleon and hyperon-nucleon forces. Finite-size
effects on the neutron kinetic energy arising when using
different number of neutrons have been corrected adopt-
ing the same technique described in Ref. [61]. Possible
additional finite-size effects for the hypernuclear systems
have been reduced by considering energy differences be-
tween HNM and PNM calculated in the same simulation
box, and by correcting for the (small) change of neutron
density.

As can be inferred by Eq. (2), both hyperon-nucleon
potential and correlations contribute to f(ρ, x), whose
dependence on ρ and x can be conveniently exploited
within a cluster expansion scheme. Our parametriza-
tion is

f(ρ, x) = c1
x(1− x)ρ

ρ0
+ c2

x(1− x)2ρ2

ρ2
0

. (4)

Because the ΛΛ potential has not been included in the
model, we have only considered clusters with at most one
Λ. We checked that contributions coming from clusters
of two or more hyperons and three or more neutrons give
negligible contributions in the fitting procedure. We have
also tried other functional forms for f(x, ρ), including
polytropes inspired by those of Ref. [20]. Moreover, we
have fitted the Monte Carlo results using different x data

sets. The final results weakly depend on the choice of
the parametrization and on the fit range, in particular
for the hyperon threshold density. The resulting EoSs
and mass-radius relations are represented by the shaded
bands in Fig. 1 and Fig. 2. The parameters c1 and c2
corresponding to the centroids of the figures are listed in
Tab. II.

Table II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

hyperon-nucleon potential c1 [MeV] c2 [MeV]

ΛN −71.0(5) 3.7(3)

ΛN + ΛNN (I) −77(2) 31.3(8)

ΛN + ΛNN (II) −70(2) 45.3(8)

Once f(ρ, x) has been fitted, the chemical potentials
for neutrons and lambdas can be evaluated via

µn(ρ, x) =
∂EHNM

∂ρn
, µΛ(ρ, x) =

∂EHNM

∂ρΛ
, (5)

where EHNM = ρEHNM is the energy density. The hy-
peron fraction as a function of the baryon density, x(ρ),
is obtained by imposing the condition µΛ = µn. The
Λ threshold density ρthΛ is determined where x(ρ) starts
being different from zero.

In Fig. 1 the EoS for PNM (green solid curve) and
HNM using the the two-body ΛN interaction alone (red
dotted curve) and two- plus three-body hyperon-nucleon
force in the original parametrization (I) (blue dashed
curve) are displayed. As expected, the presence of hy-
perons makes the EoS softer. In particular, ρthΛ =
0.24(1) fm−3 if hyperons only interact via the two-body
ΛN potential. As a matter of fact, within the AFDMC
framework hypernuclei turn out to be strongly overbound
when only the ΛN interaction is employed [34, 35]. The
inclusion of the repulsive three-body force (model (I)),
stiffens the EoS and pushes the threshold density to
0.34(1) fm−3. In the inset of Fig. 1 the neutron and
lambda fractions are shown for the two HNM EoSs.

Remarkably, we find that using the model (II) for
ΛNN the appearance of Λ particles in neutron matter is
energetically unfavored at least up to ρ = 0.56 fm−3, the
largest density for which Monte Carlo calculations have
been performed. In this case the additional repulsion
provided by the model (II) pushes ρthΛ towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.
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Figure 1. (Color online) Equations of state. Green solid curve
refers to the PNM EoS calculated with the AV8’+UIX poten-
tial. The red dotted curve represents the EoS of hypermatter
with hyperons interacting via the two-body ΛN force alone.
The blue dashed curve is obtained including the three-body
hyperon-nucleon potential in the parametrization (I). Shaded
regions represent the uncertainties on the results as reported
in the text. The vertical dotted lines indicate the Λ thresh-
old densities ρthΛ . In the inset, neutron and lambdas fractions
corresponding to the two HNM EoSs.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [62] with the EoSs of Fig. 1 are shown in
Fig. 2. The onset of Λ particles in neutron matter siz-
ably reduces the predicted maximum mass with respect
to the PNM case. The attractive feature of the two-body
ΛN interaction leads to the very low maximum mass of
0.66(2)M�, while the repulsive ΛNN potential increases
the predicted maximum mass to 1.36(5)M�. The latter
result is compatible with Hartree-Fock and Brueckner-
Hartree-Fock calculations (see for instance Refs. [2–5]).

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
Λ threshold density. In particular, when model (II) for
the ΛNN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (ρ ≤ 0.56 fm−3).
It is interesting to observe that the mass-radius relation
for PNM up to ρ = 3.5ρ0 already predicts a NS mass
of 2.09(1)M� (black dot-dashed curve in Fig. 2). Even
if Λ particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present
astrophysical observations.

In this Letter we have reported on the first quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and Λ particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
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Figure 2. (Color online) Mass-radius relations. The key is
the same of Fig. 1. Full dots represent the predicted max-
imum masses. Horizontal bands at ∼ 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

perons in neutron matter. When using a three-body
ΛNN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until ρ = 0.56 fm−3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the ΛN model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies
in Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63, 64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.
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