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We present prescriptions for obtaining the central charges, a and c, of a four dimensional su-
perconformal quantum field theory from the superconformal index. At infinite N , for holographic
theories dual to Sasaki-Einstein 5-manifolds the prescriptions give the O(1) parts of the central
charges. This allows us, among other things, to show the exact AdS/CFT matching of a and c

for arbitrary toric quiver CFTs without adjoint matter that are dual to smooth Sasaki-Einstein
5-manifolds. In addition, we include evidence from non-holographic theories for the applicability of
these results outside of a holographic setting and away from the large-N limit.
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INTRODUCTION

Given a possibly strongly interacting quantum field
theory, one of the basic questions that can be asked is
what are its degrees of freedom. In general, this appears
to be a difficult problem. However, with the addition of
conformal symmetry, there is a growing body of evidence
that universal information on the spectrum of operators
is contained in the central charges. In two dimensions,
this is evident from the Cardy formula [1], which relates
the asymptotic density of states to the central charge
c, as well as the Zamolodchikov c-theorem [2] governing
flows between fixed points. In four dimensions, the cen-
tral charges a and c control the entanglement entropy [3],
while the a-theorem [4] suggests that a is a proxy for the
number of degrees of freedom at conformal fixed points.
Additional support for a four-dimensional connection

between central charges and the spectrum comes from
the recent observation [5, 6] that the difference c − a
can be obtained from the four-dimensional N = 1 su-
perconformal index [7, 8]. This index counts the number
of shortened states in the spectrum, and for the right-
handed index is given by

IR(t, y; ai) = Tr(−1)F e−βδt−2(E+j2)/3y2j1
∏

a2sii , (1)

where δ = E − 3
2r − 2j2, and {E, j1, j2, r} are the quan-

tum numbers of the superconformal group SU(2,2|1).
Here β regulates the infinite sum but otherwise drops
out of the index since only states with δ = 0 contribute.
The final factor above encodes global flavor symmetries
with quantum numbers {si} and corresponding fugacities
{ai}. The left-handed index IL is similarly defined with
the replacement r → −r and j1 ↔ j2. The insertion of
(−1)F is what ensures that only the shortened spectrum
contributes to the index, and the result of [5, 6] is con-
sistent with the central charges a and c being among the
unrenormalized (protected) information in the theory [9].

There have been other attempts in the literature to re-
late the central charges to the index. In [10], the central
charge c was noticed to play a role in the modular prop-
erties of the N = 2 index, while in [11] a relation was
obtained for 2a−c of a CFT with N = 2 supersymmetry
(see also [12]). Moreover, in [13] the central charges were
related to the so-called single-letter index, and in [14] it
was observed that the central charges dictate a specific
relation between the supersymmetric partition function
on Hopf surfaces and the index. These results suggest
that it ought to be possible to obtain both of the central
charges a and c independently from the index.
In this letter we demonstrate that the superconformal

index indeed provides information about a and c sepa-
rately. This follows from the recent work by Beccaria
and Tseytlin [15] that demonstrated that the one-loop
corrections to a and c in the holographic dual only re-
ceive contributions from the shortened spectrum. Since
it is precisely this information that is captured by the
index, it is then possible to extract the corrections to a
and c from the index. Following a similar approach as in
[6], we find that the central charges are encoded in the
t, y → 1 limit of the functions

â =
1

32
(t∂t + 1)(− 9

2 t∂t(t∂t + 2) + 9
2 (y∂y)

2 − 3)Î(t, y),

ĉ =
1

32
(t∂t + 1)(− 9

2 t∂t(t∂t + 2)− 3
2 (y∂y)

2 − 2)Î(t, y),

(2)

where Î = (1 − yt−1)(1 − y−1t−1)I+
s.t. is the single-trace

index with descendants removed and I+
s.t. ≡ 1

2 (I
R
s.t. +

IL
s.t.). (The single-trace index is obtained from Eq. (1)

by restricting the sum to the single-trace spectrum and is
natural from a holographic point of view.) The fugacities
are taken to one after acting with the differential operator
on Î and the central charges are extracted as

a = lim
t→1

â(t, y = 1), c = lim
t→1

ĉ(t, y = 1). (3)
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Note also that the difference of these equations repro-
duces the c− a prescription of [6].
Since Eq. (2) was derived from a one-loop computation

in the holographic dual, it only computes the subleading
O(1) parts of a and c in holographic theories. Curiously,
however, it is possible to recover the full values of a and
c from these expressions for some classes of large-N non-
holographic theories. In any case, the result obtained
from these equations may be divergent when working in
the large-N limit, in which case the appropriate prescrip-
tion is to take the finite term in the Laurent expansions
of â and ĉ about t = 1.
In order to highlight the potential divergences in a and

c, we consider a series expansion of I+
s.t., first around

y = 1 and then around t = 1. Generically, the expansion
takes the form (see Sec. IV of [6])

Is.t. =

(

a0
t− 1

+ a1 + a2(t− 1) + · · ·

)

+(y − 1)2
(

b0
(t− 1)3

+
b1

(t− 1)2
+

b2
t− 1

+ · · ·

)

+ · · · . (4)

We have dropped the + superscript of Is.t. assuming that
we are dealing with CP invariant theories; this will be the
running assumption in the rest of this letter. Applying
Eq. (2) to this expression gives

â|y=1 =
9(a0 − b0)

32(t− 1)2
−

3(a0 + 12a2)− 9(b0 − b1 + b2)

32
+ · · · ,

ĉ|y=1 = −
3(a0 − b0)

32(t− 1)2
−

2(a0 + 12a2) + 3(b0 − b1 + b2)

32

+ · · · . (5)

Provided the single-trace index has the structure of (4),
this demonstrates that â and ĉ have at most a double
pole and no single pole. The prescription for removing
the divergence then amounts to dropping the double pole.

LARGE-N THEORIES WITH HOLOGRAPHIC

DUAL

We first examine the holographic case, since that is
the framework in which the expressions for a and c were
derived. More specifically, we focus on four-dimensional
SCFTs dual to IIB theory on AdS5 × SE5 (and leave
the study of other holographic settings to future work).
For these examples Eq. (2) gives only an O(1) sublead-
ing correction to the central charges, so in this section
we expect to only reproduce this subleading contribution
which we denote by δa and δc. Of course, for such theo-
ries the computation of the O(1) part of a and c from the
large-N single-trace index of the SCFT (or equivalently,
the single-particle index of the gravity side) follows di-
rectly from the work of Beccaria and Tseytlin [15] on the

one-loop contributions of bulk one-particle states to the
boundary central charges. The use of the superconformal
index in Eq. (2) is at one level simply a rewriting of the
sum of the contributions over all bulk states. However,
the index does provide an alternative method for regu-
larizing the divergent sum over the KK towers in terms
of keeping the finite term in an expansion about t = 1.

In principle, the application of Eq. (2) to a holographic
SCFT can also be viewed as a one-loop test of AdS/CFT.
In this sense, the result of [15] can be interpreted as a test
for the N = 4 theory, confirming and refining the earlier
results of [16, 17]. This can be easily generalized to the
case of arbitrary toric quiver CFTs without adjoint mat-
ter that are dual to smooth Sasaki-Einstein 5-manifolds.
The index of such a toric theory is [18, 19]

Is.t. =
∑

i

1

tri/3 − 1
, (6)

where ri are the R-charges of extremal BPS mesons. Ap-
plying (2) to (6) gives

â = −
27

32(t− 1)2

nv
∑

i=1

1

ri
−

1

32

nv
∑

i=1

ri + · · · (7)

in an expansion about t = 1. Keeping the finite piece and
noting that

∑

ri = 6(# nodes in the quiver), we obtain

δa = −
3

16
(# nodes in the quiver). (8)

This matches the expected result for the O(1) part of
a based on the decoupling of a U(1) at each node in
the quiver; since there are no adjoint matter fields in
the quiver, there are no additional O(1) contributions
to a in the field theoretical computation through a =
1
32 (9TrR

3−3TrR). The successful matching for the O(1)
part of c can now be deduced either from a similar appli-
cation of Eq. (2) to (6) or from the successful matching
of c− a reported in [6].

We have also checked that Eq. (2) successfully repro-
duces the O(1) part of the central charges of all the other
holographic theories discussed in [6]. These include the
N = 4 theory which has adjoint matter, the singular Z2

orbifold, and the non-toric SPP and del Pezzo theories.

It is of course possible to perform a one-loop test by
directly performing the KK sum, and not going through
the index as a regulator. In particular, one could proceed
along the lines of [20–22] by introducing a zp regulator
where p is the KK level, and then taking the limit z → 1.
This type of regulator was recently justified for theN = 4
theory in [15] in terms of the ten-dimensional spectral ζ-
function, and we have verified that it continues to provide
a successful O(1) matching of both a and c for all the
N = 1 cases discussed in [20–22].
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The second order pole in a and c

As seen in (5), the coefficients of the second order pole
in â and ĉ, and hence ĉ − â are all determined by the
combination a0 − b0. A relation was given in [6] for the
pole in ĉ− â in terms of curvature invariants of the dual
geometry. Therefore similar relations may be obtained
for the coefficients of the pole terms that Eq. (2) gives
for â and ĉ of a holographic SCFT. The relation proposed
in [6] implies a negative coefficient for the pole in ĉ− â,
and hence a positive one for â and a negative one for ĉ.
Because of the universal behavior of the second order

pole, for all SCFTs dual to IIB theory on AdS5 × SE5

the combination

3ĉ+ â = −
9

32
(t∂t + 1)(2t∂t(t∂t + 2) + 1)Î(t, y), (9)

is finite at t = 1. In fact, assuming the expansion (4) for
the index, this combination is always finite. The finite-
ness can be traced to the absence of the y-dependent
operator in (9). This particular combination of a and c
has been shown to be proportional to a supersymmetric

Casimir energy in [13] and further discussed and argued
to be regularization scheme independent in [14, 23]. Here
we find explicit evidence for these statements of scheme
independence. In particular, we see that this quantity re-
ceives no contributions from states with arbitrarily large
dimension in the large-N limit which would give rise to
the second order pole in â and ĉ individually. It would be
interesting to understand this behavior more completely.

NON-HOLOGRAPHIC SCFTS

Although the expression (2) was derived from a holo-
graphic computation of the O(1) contributions to a and
c, we can nevertheless ask whether it can apply to non-
holographic SCFTs as well. Since the single-trace index
is inherently a large-N construct, we start the discussion
with large-N SCFTs.

Our primary example are the Ak theories, the simplest
of which has k = 1; this is SQCD without adjoint matter.
The single-trace index can be obtained in the Veneziano
limit [6, 24], and application of Eq. (2) then gives

â =
9(2k − 1)(k + 1)

128k(t− 1)2
+

−3 + 3k − 12k2 +N2
c (6 + 3k + 15k2)− 36N4

c /N
2
f

8(k + 1)3
+ · · · ,

ĉ = −
3(2k − 1)(k + 1)

128k(t− 1)2
+

−2 + 5k − 11k2 +N2
c (7 + 5k + 16k2)− 36N4

c /N
2
f

8(k + 1)3
+ · · · , (10)

with the finite terms giving the full values of a and c, and
not just their O(1) components [25].

This example demonstrates that the divergence at
t = 1 remains, presumably as a large-N effect, regard-
less of holography. However here the finite term recovers
the full O(N2) values of both a and c in contrast with the
holographic examples where the result only gave the O(1)
contributions. The difference presumably lies in the type
of large-N limit taken. For the Ak theories we have taken
the Veneziano limit, i.e. Nc ≫ 1 with Nc/Nf fixed. To
emphasize one reason why this is different from a holo-
graphic ’t Hooft limit, a distinction should be made in
the number of types (or flavors) of single-trace operators.
In the holographic setting this corresponds to the num-
ber of Kaluza-Klein towers that exist in the reduction so
we will refer to each flavor as an individual tower. In the
Veneziano limit there are an infinite number of towers of
single-trace operators, as opposed to a finite number of
towers arising in the holographic examples. This feature
is presumably what allows the index to capture the full
expressions for a and c, including the N2 terms.

Moving away from large-N

Since the index is well-defined even away from the
large-N limit, Eq. (2) ought to be applicable to finite-
N theories as well. However, in this case the single-trace
index is not well defined, and a natural choice is to re-
place it by the plethystic log [26] of the full index.
Obtaining tractable analytic expressions for the super-

conformal index of interacting theories at finite N is gen-
erally difficult, so instead we first comment on the general
structure. Following [6], we assume that the result of the
plethystic log gives a reduced index Î that is a regular
function with a first order zero at t = 1 when y = 1. In
this case, one can Taylor expand around t = y = 1

Î(t, y) = f1(t− 1) + f2(t− 1)2 + f3(t− 1)3 + · · ·

+(y − 1)2
(

g0 + g1(t− 1) + · · ·
)

+ · · · , (11)

where we have kept only the terms relevant for the calcu-
lation of â and ĉ in (5). Comparison with (4) then yields
a0 = b0 = f1. Examination of (5) then demonstrates
that the expressions for â and ĉ in (2) remain finite.
Consistency with the result of Di Pietro and Komar-
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godski [5] then gives a0 = b0 = 32(c − a), along with a
further condition g0 + g1 = 0 that was obtained in [6].
Combining this information with (5) we find

â = −
3

32
(a0 + 9a2) +O(t− 1),

ĉ = −
1

32
(2a0 + 27a2) +O(t− 1). (12)

Remarkably, only the a0 and a2 coefficients enter the
expressions for â and ĉ. This means, in particular, that
the central charges can be obtained from Ifinite-N

s.t. (t, 1)
where y is set to unity. Since y = 1 corresponds to a
computation of the supersymmetric partition function on
the round S3 [27–29], we see that no squashing is needed
to have a and c separately encoded. One can also turn
Eq. (12) around and write it as an expansion of the finite-
N single-trace index. The result is

Ifinite-N
s.t. (t, 1) =

32(c− a)

t− 1
+ a1 −

32

27
(3c− 2a)(t− 1)

+ · · · . (13)

Note that the Hofman-Maldacena bound 3c ≥ 2a [30]
guarantees that the coefficient of t − 1 in the above ex-
pansion is never positive.

As an example, consider the family of theories with
a U(1)N gauge group and Nχ neutral chiral multiplets
(along with their conjugates) having R-charges Ri. This
class includes the magnetic dual description of SQCD
with Nf = Nc + 1. The index is

Ifinite-N
s.t. = N

(

1−
1− t−2

(1 − t−1y)(1− t−1y−1)

)

+

Nχ
∑

i=1

t−Ri − tRi−2

(1− t−1y)(1− t−1y−1)
. (14)

Expanding Ifinite-N
s.t. (t, 1) around t = 1 yields

Ifinite-N
s.t. =

−2(N +
∑

(Ri − 1))

t− 1
−
∑

(Ri − 1)

−
1

3

(

∑

(Ri − 1)3 −
∑

(Ri − 1)
)

(t− 1)

+ · · · . (15)

Comparing with (4), it is now easy to see that a0 =
−2TrR = 32(c−a) and a2 = − 1

3 (TrR
3−TrR) = − 32

27 (3c−
2a), thus confirming (13).

Taking the expression (13) one step further, we now
consider the plethystic exponential of the finite-N single-
trace index near t = 1. For this it is convenient to define

t = eβ and expand near β = 0. From (13) we find

Ifinite-N (eβ , 1)

= exp

(

∞
∑

n=1

1

n
Ifinite-N
s.t. (enβ , 1)

)

= exp

(

∞
∑

n=1

32(c− a)

n2β
+

a′1
n

−
8

27
(3c+ a)β + · · ·

)

= exp

(

16π2(c− a)

3β
+

4

27
(3c+ a)β + · · ·

)

, (16)

where in the final equality we have replaced the infinite
sums on n with their ζ-function regularized values and
thrown away the divergent harmonic series, i.e.

∞
∑

n=1

1

n2
=

π2

6
,

∞
∑

n=1

1

n
→ 0,

∞
∑

n=1

1 → −
1

2
. (17)

Note that with this regularization we are neglecting po-
tential O(β0) and O(log β) terms in the exponent of the
index (see Eq. (4.9) in [5] which demonstrates the exis-
tence of such terms in the index of a free vector multi-
plet). Nonetheless the O(1/β) and O(β) terms in (16)
appear to be unambiguous. In particular, the leading
behavior of the result (16) is consistent with the generic
results of [5] on supersymmetric partition functions. Fur-
thermore, the O(β) term in the exponential of (16) is
precisely the supersymmetric Casimir energy (9) which
was originally obtained in [13, 14] from the single-letter
index.

The above discussion provides evidence that the ex-
pression (2), when applied to finite-N theories, yields a
and c directly, without any needed subtraction. With the
assumption in (11) on the form of the single-trace index
(whose validity is worth exploring), we can turn our con-
jecture into one for the coefficient of the linear term in
the expansion of the single-trace index around t = 1; this
is shown as the last term in Eq. (13). The fact that this
term reproduces the precise behavior in [13, 14] provides
a non-trivial test of this statement.

At large-N , the expression for â and ĉ formally di-
verges at t = 1. This divergence is related to the infinite
sum encountered when computing the single-trace index,
which at finite-N would terminate at O(N) due to trace
identities. In the holographic examples, Eq. (2) computes
the O(1) contribution to a and c, while in the Ak theo-
ries in the Veneziano limit, it yields the complete O(N2)
behavior. The distinction between these two cases ap-
pears to be related to the number of types (or flavors)
of single-trace operators present in the theory, with the
holographic cases having a finite O(1) number and the
Ak theories having an infinite O(N2) number.

It would be interesting to explore the pole structure
and validity of our prescriptions in (2) and (3) for the in-
dices of strongly coupled theories with a six dimensional
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origin [31]. These theories have O(N3) degrees of free-
dom and also admit a dual holographic description in
the large-N limit [32]. Results on the indices are already
available [33, 34], although their behavior near t = 1 re-
mains to be explored.
Finally, for the holographic examples, the leading

O(N2) contributions to a and c are well understood from
the gravity dual in terms of the geometry of the inter-
nal manifold [35, 36]. In the field theory they appear in
the behavior of the Hilbert series for mesonic operators
in the CFT [37]. Therefore, the leading order central
charges are encoded in the spectrum as well; our results
suggest that they are not, however, encoded in the large-
N superconformal index. A proper understanding of this
distinction may shed light on the manifestation of a holo-
graphic dual directly within field theory.
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