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We use the coset construction of low-energy effective actions to systematically derive Wess-Zumino
(WZ) terms for fluid and isotropic solid systems in two, three and four spacetime dimensions. We
recover the known WZ term for fluids in two dimensions as well as the very recently found WZ term
for fluids in three dimensions. We find two new WZ terms for supersolids that have not previously
appeared in the literature. In addition, by relaxing certain assumptions about the symmetry group
of fluids we find a number of new WZ terms for fluids with and without charge, in all dimensions.
We find no WZ terms for solids and superfluids.

Introduction.— Recently, there has been much inter-
est in understanding the effects of quantum anomalies
in hydrodynamics. In particular, chiral anomalies in a
microscopic theory are claimed to lead to new model-
independent transport phenomena, once that theory is
heated up and brought to a fluid state with finite chem-
ical potentials [1]. The recent interest is due both to
the universality of such phenomena—the new transport
coefficients are uniquely determined by the anomaly co-
efficient and by thermodynamic variables—and, perhaps
more pragmatically, to the realization that such effects
could be observable in heavy-ion collisions [2].

Even though they appear at the same order in the
derivative expansion as dissipative effects, the effects in
question are non-dissipative. If one artificially sets to
zero the viscosity and heat conduction coefficients, but
not the anomaly coefficient, one is left with entropy-
conserving “anomalous transport.” It is thus natural to
ask whether such effects can be captured by a low-energy
effective field theory (EFT) description of hydrodynam-
ics [3], which is non-dissipative by construction. In this
framework, anomalous effects are described by terms in
the action that are invariant only up to a total derivative.
These are known asWess-Zumino (WZ) terms [4, 5], and
they also belong in the low-energy invariant action [6].
The systematic derivation of such terms is the main fo-
cus of this Letter.

To derive WZ terms, we adopt a standard coset con-
struction. This formalism is general enough to accommo-
date not only ordinary fluids, but also superfluids, solids,
and supersolids. We carry out a search for WZ terms for
all of these systems in two, three and four spacetime di-
mensions. With these methods, we are able to construct
new WZ terms. In particular, for fluids and supersolids
we find WZ terms that, to our knowledge, have not ap-
peared previously in the literature.

The physical effects of these terms will be worked out
in future work. In particular, as a first step we will need
to translate our WZ terms—which appear as corrections
to the action—into the standard language of “constitu-
tive relations”, that is, as corrections to the currents and
stress-energy tensor of the system (see e.g. [1, 7, 8]). The

translation will entail using the Noether theorem and
adding improvement terms to restore gauge-invariance,
as done for instance in [9] for (1+1)D fluids.
This Letter is a continuation of the work done in [10].

For further details, derivations and conventions we refer
the reader to this previous paper. For a different ap-
proach to anomalies in hydrodynamics, see instead [11].

The coset construction.— From an EFT point of
view, relativistic fluids, solids, superfluids and super-
solids are not that different from each other. In all these
systems, boosts are spontaneously broken together with
other spacetime and internal symmetries. The only sym-
metries that remain unbroken are large-scale isotropy1

and homogeneity which, depending on the system, can
sometimes be associated with linear combinations of
Poincaré and internal generators. A concise summary
of the symmetry properties of fluids, solids, superfluids
and supersolids is provided in Table I.
At sufficiently low-energies, the effective actions for

these systems contain only the Goldstone excitations as-
sociated with the relevant symmetry breaking pattern,
and can be obtained systematically using the coset con-
struction [12–15]. Here we present a concise review of
the coset construction “algorithm.” The starting point
is the coset parametrization

Ω = eix
µP̄µeiπ

aXa , (1)

where the Xa’s are the generators that are broken by the
ground state of the system, the πa’s are the associated
Goldstone fields, and the P̄µ’s are the generators of un-
broken translations, which once again may or may not be
linear combinations of Poincaré and internal generators.
Using Ω, one can build the Maurer-Cartan one-form

Ω−1dΩ = i(ωµ
P̄
P̄µ + ωa

XXa + ωA
T TA), (2)

1 For simplicity we neglect crystalline solids, for which isotropy is
replaced by invariance under a discrete subgroup of rotations.
Our techniques can be extended straightforwardly to cover this
case as well.
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where the TA’s are all the unbroken generators that are
not translations. The one-forms ωµ

P̄
are related to the

spacetime vielbeins by ωµ
P̄

= eα
µ dxα, while the one-

forms ωa
X yield the covariant derivatives of the Goldstone

fields via ωa
X = eα

ν Dνπ
a dxα. Finally, the one-forms ωA

T

can be used to define higher-order covariant derivatives
of the Goldstones as well as covariant derivatives of mat-
ter fields. Together, these building blocks can be used
to create generic effective Lagrangians that are invariant
under the full symmetry group, with the broken symme-
tries realized non-linearly.

As is well known, the relativistic Goldstone theorem
does not directly apply to relativistic systems that spon-
taneously break spacetime symmetries. In particular,
the number of broken generators can exceed the num-
ber of low-energy excitations. In the coset construction,
this mismatch arises because certain covariant derivatives
Dνπ

a can be set to zero while preserving all the symme-
tries and such conditions can be solved to eliminate some
of the Goldstone fields from the Lagrangian. These con-
ditions are known as inverse Higgs constraints [16]. As a
consequence of such constraints, our fluid and solid sys-
tems are all described in D spacetime dimensions by at
most D massless Goldstones, even though they all have
at least D broken symmetries [10].

Wess-Zumino terms.— The coset construction de-
scribed thus far generates all the terms in the effective La-
grangian that are exactly invariant under the non-linearly
realized symmetries. However, it does not capture Wess-
Zumino (WZ) terms [4, 5], which are invariant only up
to a total derivative. As mentioned in the introduction,
these terms are necessary to describe low-energy conse-
quences of anomalies in the UV theory.

Wess-Zumino terms can be constructed from the one-
forms that are produced by the coset construction. Let
us outline the procedure. (More details can be found in
[6, 17].) For a symmetry group G spontaneously broken
down to the subgroup H , we can construct exact, invari-
ant (D + 1)-forms on G/H using the covariant ω’s. Let
us denote such a (D + 1)-form by α = dβ. The D-form
β itself is not necessarily invariant but, since α is invari-
ant, it can shift by a total derivative. We can find all
D-forms that shift by a total derivative by first finding
all exact, invariant (D+1)-forms α and then identifying
those which differ only by the derivative of a D-form γ

System P0 Pi Ji Internal symmetries

Superfluid X X U(1)

Solid X ISO(d)

Fluid X ISL(d) → Diff ′(d)

Supersolid U(1)× ISO(d)

Fluid w/ Q0 ⊂ ISL(d+ 1) → Diff ′(d+ 1)

TABLE I. A checkmark indicates that a translation or ro-

tation generator is unbroken. The last column contains the

internal symmetry group which gets spontaneously broken by

the ground state. We are denoting with Diff ′(d) the group of

diffeomorphisms with unit Jacobian in d dimensions.

which is itself invariant, i.e. α ∼ α+ dγ. Any member of
this equivalence class can be identified with the D-form β
that shifts as a total derivative. The Wess-Zumino terms
are obtained by integrating all the inequivalent D-forms
β on the D-dimensional spacetime manifold.
In our analysis we discard tadpole WZ terms because

we assume that the ground state corresponds to a solu-
tion of the EFT field equations. However, these tadpoles
might be relevant for cosmological applications, where
the background solutions to the field equations are typi-
cally time-dependent.
Some of the WZ terms that we find are invariant un-

der Poincaré only up to a total derivative. These terms
are likely to introduce gravitational anomalies upon cou-
pling to gravity. It would be interesting to understand
under what conditions these anomalies can be cancelled
by another sector which is somewhat decoupled from the
system under consideration. While our construction al-
lows us to consider such issues, these questions will be
studied in detail elsewhere. For this paper we choose to
focus our attention on the remaining WZ terms.
Coset construction techniques are potentially unwieldy

when applied to fluids as the low-energy effective action
for fluids is invariant under an infinite-dimensional inter-
nal symmetry group [3]. However, if one assumes invari-
ance only under a particular finite dimensional subgroup
of these symmetries, then the remaining symmetries arise
accidentally at lowest order in derivatives [10]. In this
Letter, we will follow this approach. However, since WZ
terms in D > 2 are of higher order in the derivative
expansion, it is not guaranteed that they will also be ac-
cidentally invariant under the full, infinite-dimensional
symmetry group. We check for this invariance explicitly.
In addition, by focusing on a finite dimensional subgroup,
it is possible that our analysis overlooks some terms that
are exactly invariant under the finite-dimensional sub-
group we consider, but invariant only up to total deriva-
tives under some of the symmetries we neglected. Be-
ing exactly invariant, these terms can still be obtained
from the coset construction for the finite dimensional sub-
group, but it is not possible to identify them by following
the systematic procedure outlined above.
Finally, the fact that the infinite-dimensional symme-

try group arises accidentally at lowest order in deriva-
tives leads us to question whether this group is, in fact,
the correct symmetry group for fluids at higher order in
derivatives. Indeed, at lowest order in derivatives one
can show that the conservation of the infinitely many
associated Noether charges is equivalent to Kelvin’s the-
orem [18], which is violated by higher-derivative effects
like viscosity. This further indicates that the infinite-
dimensional symmetries in question might not be funda-
mental symmetries of fluid systems, but only accidental
low-energy ones. For these reasons we also include in
our analysis WZ terms that are invariant only under the
finite-dimensional subgroup.

Results.— In order to systematically construct WZ
terms, we developed the Matlab code EZWZ which imple-
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ments the procedure described above. We plan to make
the code publicly available in the near future. In Ta-
ble II we summarize the main results we obtained from
this code for fluids, superfluids, solids, and supersolids.
The third, fourth, and fifth columns of the Table display
respectively the number of covariant, invariant and in-
variant exact (D + 1)-forms that can be constructed for
each system. The number of inequivalent WZ terms is
displayed in the sixth column. The next column shows
the number of WZ terms that are not tadpoles (/t). The
final column gives the number of remaining terms that
are exactly Poincaré Invariant (PI). In the case of flu-
ids, we are also showing in parentheses the number of
WZ terms that are accidentally invariant under the full
infinite-dimensional group of internal symmetries. To the
best of our knowledge, most of the WZ terms we found
have never been discussed in the literature before. The
only exceptions are two WZ terms for the (1 + 1)D fluid
with a conserved charge [9, 10], and the WZ term for
(2 + 1)D fluids, which first appeared in [19] while this
work was being finalized. This term was found to be
related to Hall viscosity. A detailed study of the physi-
cal implications of all the other WZ terms is beyond the
scope of the present Letter and will appear elsewhere.
Before discussing each WZ term individually, it is use-

ful to define some quantities that will appear repeatedly
in what follows. Supersolids and fluids with a conserved
charge in D = d + 1 spacetime dimensions have exactly
D Goldstones. It is then convenient to group them into
a D-vector πµ, but the reader should keep in mind that
they do not transform as a multiplet under Lorentz trans-
formations since Lorentz is broken by the medium itself.
With this notation, a fluid without conserved charge is
such that π0 = 0. It turns out that the Goldstones
always appear in the action through the combinations
φµ = xµ + πµ, which transform as scalars under space-
time symmetries. The “spatial components” φi can be
thought of as comoving coordinates of the medium’s vol-
ume elements [3], and can be used to define a metric on
such internal space

Bij = ∂µφ
i∂µφj . (3)

One can also define a time-like unit vector

Uµ ≡ εµα1...αd∂α1
φ1 . . . ∂αd

φd

√
detB

, (4)

that can be interpreted as the D-velocity field of volume
elements, since by construction it is parallel to the curves
of constant φi, i.e. Uµ∂µφ

i = 0. Finally, using Uµ we
can define an identically conserved current with d more
derivatives, namely

Jµ = εµα1...αdεν0ν1...νdU
ν0∂α1

Uν1 . . . ∂αd
Uνd . (5)

(1+1)D supersolid.—The coset of a (1+1)D supersolid
can be parametrized as

Ω = eix
µP̄µeiηKeiπ

µQµ , (6)

System D cov. inv. exact WZ /t /t+ PI

(1+1) 4 4 4 2 1 -

Superfluid (2+1) 15 5 4 1 0 -

(3+1) 56 6 5 1 0 -

(1+1) 4 4 4 2 1 -

Solid (2+1) 70 18 9 0 0 -

(3+1) 1287 57 22 0 0 -

(1+1) 10 10 8 4 2 1

Supersolid (2+1) 126 36 18 2 1 1

(3+1) 2002 98 41 1 0 -

(1+1) 4 4 4 2 1 -

Fluid (2+1) 210 40 18 1 1 1 (1)

(3+1) 8568 166 57 1 1 1 (0)

(1+1) 20 20 13 6 5 4 (1)

Fluid w/ Q0 (2+1) 715 139 48 2 2 2 (1)

(3+1) 26334 582 166 1 1 1 (0)

TABLE II.

where P̄µ = Pµ +Qµ, and K and Qµ are the generators
of boosts and internal shifts respectively. Our algorithm
returned a single WZ term, which can be derived from
the exact 3-form

ω3 = εµν ω
µ
Q ∧ ων

Q ∧ ωK . (7)

The corresponding term in the Lagrangian is

LWZ = εαβφ
α∂µφ

βJµ . (8)

This term is invariant under internal shifts only up to
a total derivative. Interestingly, this term enters the ef-
fective action for supersolids already at lowest order in
the derivative expansion, exactly like the WZ term for
a (1 + 1)D fluid with a conserved charge [9]. However,
the term (8) is not a WZ term for fluids because it is not
invariant under the full nonlinear chemical shift symme-
try [3]. Conversely, the WZ term for fluids is not a WZ
term for supersolids because it is exactly invariant under
all the symmetries of a supersolid.

(2+1)D supersolid.— The coset parametrization for a
(2 + 1)D supersolid is

Ω = eix
µP̄µeiη

iKieiπ
µQµeiαL, (9)

where L is the generator of internal SO(2) rotations. In
this case, a WZ term can be derived from the exact 4-
form

ω4 = εij(ω
0
P̄ + ω0

Q) ∧ ωL ∧ ωi
K ∧ ωj

K . (10)

After some manipulations, this 4-form leads to the fol-
lowing term in the Lagrangian for (2 + 1)D supersolids:

LWZ = φ0εij

{

∂αφ
i∂µ∂

αφj

√
detB

+B
1/2
jk ∂µB

−1/2
ki

}

Jµ. (11)

This term is a 3-derivative correction to the low-energy
effective action for (2 + 1)D supersolids. It is invariant
under U(1) transformations φ0 → φ0+ c only up to total
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derivatives.

(1 + 1)D fluid with U(1) charge.— The coset
parametrization for a (1 + 1)D fluid with a conserved
U(1) charge is

Ω = eix
µP̄µeiηKeiπ

µQµeiθF , (12)

where F is the generator of linearized chemical shifts.
As already discussed in [9, 10], there is only one WZ
term that is accidentally invariant under full chemical
shifts, and it is a 0-derivative correction to the low-energy
effective action. There are also three moreWZ terms that
are only invariant under linearized chemical shifts. One
of them is again a 0-derivative correction and was first
derived in [10]. The other two are a 0-derivative and a
1-derivative correction coming from the 3-forms

ω3 = (ω0
P̄ + ω0

Q) ∧ (ω1
P̄ + ω1

Q) ∧ ωK (13)

ω3 = (ω0
P̄ + ω0

Q) ∧ ωK ∧ ωF , (14)

and they read respectively

LWZ = εαβφ
α∂µφ

βJµ (15)

LWZ =
∂λφ

0∂λφ1

(∂φ1)2
εµνJµ∂νφ

0 . (16)

(2 + 1)D fluid.— The coset parametrization for a (2 +
1)D fluid is

Ω = eix
µP̄µeiη

iKieiπ
µQµeiα

ijMij . (17)

Here, the Mij ’s are the 3 generators of SL(2) transforma-
tions corresponding to internal linear diffeomorphisms.
As mentioned above, only this (finite dimensional) sub-
group of area-preserving diffeomorphisms is implemented
in the coset construction. Then, only one WZ term can
be written, which is generated by the exact 4-form

ω4 = εijεkl (ω
i
P̄ + ωi

Q) ∧ (ωj
P̄
+ ωj

Q) ∧ ωk
K ∧ ωl

K (18)

Integrating this form gives the contribution to the La-
grangian:

LWZ = εijφ
i∂µφ

jJµ . (19)

Remarkably, this term turns out to be accidentally in-
variant under full area-preserving diffeomorphisms. Note
also that this term is not a WZ term for solids, because
it can be made exactly invariant under all the solid sym-
metries by adding a non-invariant total derivative.
Interestingly, one can also start from a different, equiv-

alent 4-form ω̃4 ∼ ω4 defined as

ω̃4 = εijεklδmn(ω
i
P̄ + ωi

Q) ∧ (ωj

P̄
+ ωj

Q) ∧ ω
(km)
M ∧ ω

(ln)
M ,

and show that

ω̃4 ∝ d2φ ∧Tr
(

εdGG−1 ∧ dG
)

, (20)

where G = B/
√
detB and d2φ = 1

2εijdφ
i ∧ dφj . This

term and its connection with Hall viscosity were recently
discussed in [19].

(2+1)D fluid with U(1) charge.— A fluid that carries
a U(1) charge benefits from an additional chemical shift

symmetry. Considering only the linearized version of this
symmetry, the coset parametrization is

Ω = eix
µP̄µeiη

iKieiπ
µQµeiθ

iFieiα
ijMij , (21)

where the Fi are the generators of linear chemical shifts.
The term that was found for (2 + 1)D fluids without
charge can also be written here. In addition, another
WZ term is generated by the 4-form

ω4 = εijεkl ω
i
F ∧ ωj

F ∧ ωk
K ∧ ωl

K , (22)

which gives rise to the following contribution to the La-
grangian

LWZ = εijV
i∂µV

jJµ , (23)

with V i = ερνλUρ∂νφ
i∂λφ

0. This is a 3-derivative cor-
rection to the hydrodynamics of this system that is only
invariant under linearized chemical shift and diffeomor-
phisms.

(3 + 1)D fluid.— For a fluid with or without any con-
served charge in (3+1)D, the invariant 5-form that gives
rise to the single Wess-Zumino term can be written as

ω5 = ω
(ij)
M ∧ ω

(jk)
M ∧ ω

(kl)
M ∧ ω

(lm)
M ∧ ω

(mi)
M = Tr

(

G−1dG
)5

It is easy to check that this form is only invariant under
linearized internal diffeomorphisms, not under full ones.
At lowest order in the Goldstone fields, it reads

LWZ ≈ εµνλρ∂(iπj)∂µ∂(jπk)∂ν∂(kπl)∂λ∂(lπm)∂ρ∂(mπi) ,

where repeated indices are summed over. This is a 4-
derivative correction to (3 + 1)D hydrodynamics.

Outlook.— The physical interpretation and conse-
quences of these newWZ terms are interesting open ques-
tions, which we will address in a separate paper. It re-
mains to be understood which (if any) of these terms arise
from a quantum anomaly of the underlying microscopic
theory, as in the case of the (1+1)D fluid. In particular,
it would be interesting to explore the physical origin of
anomalies associated with emergent symmetries such as
internal diffeomorphisms and chemical shifts, which have
no obvious counterparts in the microscopic description
of fluids. These symmetries are “emergent” in that they
act on the low-energy collective excitations only, and not
on the microphysical degrees of freedom. But, unlike
more traditional low-energy accidental symmetries like
baryon number, they can still be taken as exact rather
than approximate, at least to all orders in the deriva-
tive expansion. This makes their physical interpretation
particularly subtle.
For our fluid and solid systems, our analysis exhausts

the list of possible WZ terms that can be generated
via the standard coset construction. While for spon-
taneously broken internal symmetries such a method
is known to generate all the possible WZ terms [6], to
the best of our knowledge this has not been proven
for spontaneously broken spacetime symmetries. But,
assuming such a result holds, it is notable that we didn’t
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find a one-derivative WZ term for (3+1)D fluids that
reproduces the chiral vortical effect of [1]. In light of
this, it’s not yet evident if this term can be derived at
zero temperature, as it would appear in [11], or if one
needs to use a finite-temperature approach such as the
Schwinger-Keldysh formalism, as suggested by [20].

Finally, it was recently discovered by using a dual
gauge theory description that (2+1)D superfluids also ad-
mit a WZ term [21]. However, when expressed in terms
of the scalar field used in this paper, this term turns out

to be invariant up to a total derivative only on-shell. Our
construction instead is based on the requirement of off-
shell invariance of the action, which is why we didn’t find
such a term. A systematic study of these “on-shell WZ
terms” will be the subject of future work.
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