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The quantum state of a superconducting transmon qubit inside a three-dimensional cavity is
monitored by transmission of a microwave field through the cavity. The information inferred from
the measurement record is incorporated in a density matrix ρt, which is conditioned on probe results
until t, and in an auxiliary matrix Et, which is conditioned on probe results obtained after t. Here,
we obtain these matrices from experimental data and we illustrate their application to predict and
retrodict the outcome of weak and strong qubit measurements.

In quantum mechanics, predictions about the outcome
of experiments are given by Born’s rule which for a state
vector |ψi〉 provides the probability P (a) = |〈a|ψi〉|2 that
a measurement of an observable Â with eigenstates |a〉
yields one of the eigenvalues a. As a consequence of the
measurement, the quantum state is projected into the
state |a〉. Yet, after this measurement, further probing
of the system is possible, and the probability that the
quantum system yields outcome a and is subsequently
detected in a final state |ψf 〉 factors into the product
|〈ψf |a〉|2|〈a|ψi〉|2. Considering initial and final states
raises the issue of post-selection in quantum measure-
ments: What is the probability that the result of the
measurement of Â was a, if we consider only the selected
measurement events where the initial state was |ψi〉 and
the final state was |ψf 〉? The answer is known as the
Aharonov-Bergmann-Lebowitz rule [1],

PABL(a) =
P (f, a|i)∑
a′ P (f, a′|i)

=
|〈ψf |a〉〈a|ψi〉|2∑
a′ |〈ψf |a′〉〈a′|ψi〉|2

(1)

and it differs from Born’s rule, which takes into account
only knowledge about the state prior to the measurement.

While it is natural that full measurement records re-
veal more information about the state of a physical sys-
tem at a given time t than data obtained only until that
time, the interpretation of the time symmetric influences
from the future and from the past measurement events on
PABL has stimulated some debate, see for example [1–6].
Meanwhile, probabilistic state assignments and correla-
tions observed in atomic, optical and solid state experi-
ments have been conveniently understood in relation to
post-selection [7–11], and precision probing theories [12–
17] have incorporated full measurement records.

In this letter, we consider a superconducting qubit that
is subject to continuous monitoring and driven unitary
evolution. We apply a recent generalization [18] of Eq.(1)
to the case of continuously monitored and evolving mixed
states. This incorporates continuous measurement out-
comes before and after t to retrodict the probabilities
for arbitrary measurements performed at time t. Our

experiments verify the probabilities assigned to projec-
tive measurements and the mean values assigned to weak
(weak value) measurements which are both nontrivially
different from predictions based only on the measurement
record up to time t.

To analyze non-pure states and partial measurements,
we represent our system by a density matrix ρ, and
measurements by the theory of positive operator-valued
measures (POVM) which yields the probability P (m) =
Tr(ΩmρΩ†m) for outcome m, and the associated back ac-
tion on the quantum state, ρ → ΩmρΩ†m/P (m), where
the operators Ωm obey

∑
m Ω†mΩm = Î. When Ωa =

|a〉〈a| is a projection operator and ρ = |ψ〉〈ψ|, the theory
of POVMs is in agreement with Born’s rule.

For systems subject to unitary and dissipative time
evolution along with continuous monitoring before and
after a measurement described by operator Ωm, one can
show [18] that,

Pp(m) =
Tr(ΩmρtΩ

†
mEt)∑

m Tr(ΩmρtΩ
†
mEt)

, (2)

where ρt is the system density matrix at time t, condi-
tioned on previous measurement outcomes, and propa-
gated forward in time until time t, while Et is a matrix
which is propagated backwards in time in a similar man-
ner and accounts for the time evolution and measure-
ments obtained after time t. The subscript ·p denotes
“past”, and in [18] it was proposed that, if t is in the
past, the pair of matrices (ρt, Et), rather than only ρt,
is the appropriate object to associate with the state of
a quantum system at time t. We observe that for the
case of pure states and projective measurements, Pp(m)
in (2) acquires the form of Eq.(1) with ρt = |ψi〉〈ψi| and
Et = |ψf 〉〈ψf |.

Here, we make use of the full measurement record to
compute the matrices ρt and Et, and analyze how they,
through application of Eq.(2) yield different predictions
for measurements on the system. For imperfect measure-
ment efficiency, non-pure states, and measurements that
do not commute with the system evolution, the predic-
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Figure 1: Time evolution in a monitored system. (a) Sim-
plified experimental setup consisting of a transmon circuit
coupled to a waveguide cavity. (b) We prepare the qubit in
an initial state (Tr(ρiσx) ' +1) and propagate ρ forward in
time, which makes accurate predictions about a final projec-
tive measurement (in the σz basis) labeled M . The dashed
line is the prediction based on a single quantum trajectory,
and the solid line is the result from projective measurements
on an ensemble of experiments that have similar values of ρt.

tions of Eq.(2) vary dramatically from those based on ρ
alone [20, 21].

Our experiment, illustrated in figure 1a, is composed
of a superconducting transmon circuit dispersively cou-
pled to a wave-guide cavity [22, 23]. The two lowest
energy levels of the transmon form a qubit with tran-
sition frequency ωq/2π = 4.0033 GHz. The dispersive
coupling between the transmon qubit and the cavity is
given by an interaction Hamiltonian, Hint. = −~χa†aσz,
where ~ is the reduced Plank’s constant, a†(a) is the cre-
ation (annihilation) operator for the cavity mode at fre-
quency ωc/2π = 6.9914 GHz, χ/2π = −0.425 MHz is
the dispersive coupling rate, and σz is the qubit Pauli
operator that acts on the qubit in the energy basis. A
microwave tone that probes the cavity with an average
intracavity photon number n̄ = 〈a†a〉 thus acquires a
qubit-state-dependent phase shift. Since 2|χ| � κ, where
κ/2π = 9.88 MHz is the cavity linewidth, qubit state in-
formation is encoded in one quadrature of the microwave
signal. We amplify this quadrature of the signal with
a near-quantum-limited Josephson parametric amplifier
[24]. After further amplification, the measurement signal
is demodulated and digitized. This setup allows variable
strength measurements of the qubit state characterized
by a measurement timescale τ ; by binning the measure-
ment signal in time steps δt � τ we execute weak mea-
surements of the qubit state [20, 25] while by integrating
the measurement signal for a time T � τ we effectively
accumulate weak measurements in a projective measure-
ment [26] of the qubit in the σz basis.

Our experimental sequences begin with a projective
measurement of the qubit in the σz basis followed by
a variable rotation of the qubit state to prepare the
qubit in an arbitrarily specified initial (nearly) pure

state. Following this preparation, the qubit is subject
to continuous rotations given by HR = ~ΩRσy/2, where
ΩR/2π = 0.7 MHz is the Rabi frequency, and continu-
ous probing given by the measurement operator

√
kσz,

where k = 4χ2n̄/κ = 1/4ητ parametrizes the measure-
ment strength (k/2π = 95 kHz) and η = 0.35 is the quan-
tum measurement efficiency [27]. During probing, we
digitize the measurement signal Vt in time steps δt = 20
ns.

The density matrix associated with a given measure-
ment signal Vt is obtained by solving the stochastic mas-
ter equation [19]:

dρ

dt
= − i

~
[HR, ρ] + k(σzρσz − ρ)

+ 2ηk(σzρ+ ρσz − 2Tr(σzρ)ρ)Vt. (3)

Here, the first two terms are the standard master equa-
tion in Lindblad form, and the last stochastic term up-
dates the state based on the measurement result and
leads to quantum trajectory solutions that are different
for every repetition of the experiment.

Let us first recall how the density matrix makes predic-
tions about the outcome of measurements. In figure 1b,
we consider the probabilities P (±z) for the outcome of
the projective measurement operators Ω±z = (σz ± 1)/2.
We prepare the initial state, Tr(ρiσx) ' +1, by heralding
the ground state and applying a π/2 rotation about the
y axis. We then propagate ρt forward from this initial
state, and at each point in time we display the calculated
P (+z) = Tr(Ω+zρtΩ

†
+z) [27]. By performing projective

measurements of Ω±z at time t on an ensemble of exper-
iments that have similar values of ρt (within ±0.02) we
obtain the corresponding experimental result P̃ (+z). We
perform this analysis at different times and we observe
close agreement between the single quantum trajectory
prediction P (+z) and the observed P̃ (+z). Note that the
same procedure was used to tomographically reconstruct
and verify the quantum trajectory associated with the
mean value 〈σz〉 = 2P (+z)− 1 in [20, 21].

We now turn to the application of measurement data to
retrodict the outcome of an already performed measure-
ment. Eq.(2) applies for any set of POVM measurement
operators Ωm at time t, and accumulates the information
retrieved from the later probing in the matrix Et that is
propagated backwards in time according to [18],

dE

dt
=

i

~
[HR, E] + k(σzEσz − E)

+ 2ηk(σzE + Eσz − 2Tr(σzE)E)Vt−dt. (4)

We assume that no measurements take place beyond
the time T , leading to the final condition ET = Î/2 [18].
If no measurements take place at all before T , for ex-
ample because η = 0, Eq.(4) yields a solution for E(t)
that remains proportional to the identity operator for all
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Figure 2: Retrodiction in a monitored system. (a) To test
retrodictions made by E we prepare different states ρi and
conduct a subsequent projective measurement M . We prop-
agate E backwards from the final state ET = Î/2 to E0 for
variable periods of time (T ). This yields a retrodiction (shown
as dashed lines for two different experiments) for the out-
come of M . The solid line, which is based on an ensemble
of experiments that yielded similar values of E0 confirms the
retrodictions based on the single measurement record. (b)
We prepare two different initial states (Tr(ρiσx) ' +1, red,
Tr(ρiσy) ' +1, blue), and compare the retrodictions, Pp(+z),
based on 5 µs of probing, to the outcomes of measurements
M that yielded similar values of E0. In the lower panel, we
display histograms of Pp(+z) for different propagation times.
As more of the record is included, the retrodicted probabilities
assume a wider range of values.

times, and Eq.(2) leads to the conventional expression
that depends only on ρt.

In figure 2 we test the retrodictions made by E and
Eq.(2). We examine different initial states, Tr(ρiσx) '
+1, Tr(ρiσy) ' +1, which are prepared by heralding
the ground state and applying π/2 rotations about the
y and −x axes respectively. We propagate E backwards
from ET to E0 to make a retrodiction about a projective
measurement M . Note that while the initial states ρi
make ambiguous predictions about the outcome of M ,
P (+z) = 1/2, the retrodiction for the outcome of M
becomes biased by the information obtained later and
incorporated in the matrix E.

We verify that the retrodictions are correct by aver-
aging the outcomes of many measurements M that cor-
responded to similar values of E0 to obtain an experi-
mentally derived probability, P̃ (+z). Figure 2a displays
two sample trajectories for the retrodiction Pp(+z) along
with P̃ (+z). As more information is included, the retro-
dictions converge to fixed values. Figure 2b displays the
results of 3 × 105 experimental tests for the two differ-
ent initial states ρi. For both initial states and for a
wide range of measurement outcomes we are able to to-
mographically verify the retrodictions. We also display
histograms of the different values Pp(+z) for different
propagation times of E. The larger the bias of Pp(+z)
compared to P (+z), the more often our hindsight en-

ables a correct guess of the outcome of the projective σz
measurement.

Having verified the predictions based on ρ, and the
retrodictions based on E, we now aim to illustrate the
application of ρ and E to use both past and future in-
formation to predict the outcome of a POVM measure-
ment. The POVM measurement that we consider is sim-
ply a short segment of the measurement signal received
between t and t + ∆t and is given by the measurement
operators [19, 28],

ΩV =
(
2πa2

)−1/4
e(−(V−σz)2/4a2) (5)

where, 1/4a2 = kη∆t. The operators ΩV satisfy´
Ω†V ΩV dV = Î as expected for POVMs, and if we as-

sume that ρt can be treated as a constant during ∆t,
the probability of the measurement yielding a value V is
P (V ) = Tr(ΩV ρtΩ

†
V ), which is the sum of two Gaussian

distributions with variance a2 centered at +1 and −1 and
weighted by the populations ρ00 and ρ11 of the two qubit
states. The σz term in ΩV causes the back action on
the qubit degree of freedom, ρ → ΩV ρΩ†V , due to the
readout of the measurement result V . If the effects of
damping and the Rabi drive can be ignored during ∆t,
the operators (5) also describe a stronger measurement,
yielding ultimately the limit where the two Gaussian dis-
tributions are disjoint, and the readout causes projective
back action of the qubit on one of its σz eigenstates, with
probabilities ρ00 and ρ11.

Since the system is also subject to probing and evolu-
tion after t, we now examine what hindsight predictions
can be made for the outcome of the measurement ΩV
based on both earlier and later probing. We must hence
evaluate the conditioned density matrix ρt and the ma-
trix Et and Eq.(2) yields the outcome probability distri-
bution expressed in terms of their matrix elements,

Pp(V ) ∝ρ00E00e
(−(V−1)2/2a2) + ρ11E11e

(−(V+1)2/2a2)

+ (ρ10E01 + ρ01E10)e(−(V 2+1)/2a2).

We observe that the information obtained after the mea-
surement of interest plays a formally equally important
role as the conditional quantum state represented by ρ.

The predicted mean value is 〈V 〉p =
´
Pp(V )V dV , and

can be evaluated,

〈V 〉p =
(ρ00E00 − ρ11E11)

(ρ00E00 + ρ11E11 + exp(− 1
8a2 )(ρ10E01 + ρ01E10)

.

(6)

Here we note that if the measurement is strong, a is small,
and the coherence contribution is cancelled in the denom-
inator, yet if the measurement is weak, a single measure-
ment is dominated by noise and reveals only little infor-
mation (and causes infinitesimal back action). This is
the situation that leads to so-called weak values. If the
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Figure 3: Conventional and past quantum state predictions
for the measurement ΩV conducted at time t. (a) The ex-
periment sequence initializes the qubit along +x and probes
the cavity while the qubit transition is driven with a constant
Rabi frequency. Each experiment yields a value V resulting
from the ΩV measurement and predicted mean values 〈V 〉
(which is based on ρ), and 〈V 〉p (which is based on ρ and E).
We plot V versus 〈V 〉 (b), and 〈V 〉p (c) and find that the
conditional average of V (open circles) is in agreement with
the expected mean value given by the dashed line. Note that
〈V 〉p makes predictions for the mean value that fall outside of
the spectral range of the qubit observable (in the pink region).

measurement signal is proportional to an observable Â,
and the system is initialized in |ψi〉 and post-selected in
state |ψf 〉, the mean signal is given by [29],

〈Âw〉 = Re[
〈ψf |Â|ψi〉
〈ψf |ψi〉

], (7)

which may differ dramatically from the usual expectation
value 〈ψi|Â|ψi〉. Our Eq.(2) has, indeed, been derived by
Wiseman [30] to clarify how weak values are related to
continuous quantum trajectories and correlations in field
measurements.

In figure 3, we display results of our experiments that
test the predictions of Eq.(6). For many iterations of
the experiment we choose a measurement time interval,
∆t = 180 ns that is short enough that the effect of the
continuous Rabi drive is nearly negligible in the time in-
terval (t, t+∆t). Based on 800 ns of probing before t, we
calculate P (V ), and based on 800 ns of probing before
and after the measurement interval, we calculate Pp(V )
for the result of the measurement. In Fig. 3, we show
that both the conventional and the past quantum state
formalism yield agreement between the predicted mean
value and the measured values. The measured results are
noisy, and we plot the data with the predicted average
value along the horizontal axes, and the measured values
along the vertical axes.

While 〈V 〉 = 〈σz〉, and thus never exceeds 1, a fraction
of the experiments lead to prediction and observation of
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Figure 4: Bloch vector representation of the matrix elements
of ρ and E. For each iteration of the experiment, a line joins
the coordinates {Tr(ρσx),Tr(ρσz)} = {〈σx〉, 〈σz〉} (closed cir-
cles) and 1

Tr(E)
{Tr(Eσx),Tr(Eσz)} (open circles). The closed

circles represents the state of the system at time t based on
ρt, and the open circles represent the corresponding quantity
based on Et+∆t. The color indicates the value of 〈V 〉p for each
pair of states. Panel (a) displays some of the the matrix ele-
ments that yield normal predictions (|〈V 〉p| ≤ 1), and panel
(b) displays a sample of matrix elements that yield anomalous
(|〈V 〉p| > 1) predictions.

values |〈V 〉p| > 1. Such anomalous weak walues in con-
nection with Eq.(7) have been typically identified with
the intentional post selection of final states with a very
small overlap with the initial state. Surprisingly, con-
tinuous probing leads to similar effects [21]. In figure 4
we examine the states that lead to different weak value
predictions. We represent pairs of ρ and E as connected
points on the Bloch sphere. Indeed, predictions outside
the spectral range of the operator are accompanied by
near orthogonality of states associated with the matrices
ρt and Et+∆t. In agreement with the pure state case,
large weak values of σz do not occur when ρt or Et+∆t

are close to the σz eigenstates, but rather when they are
close to opposite σx eigenstates.

In conclusion, we have demonstrated the use of the
quantum trajectory formalism to infer the quantum state
of a superconducting qubit conditioned on the outcome
of continuous measurement. We have also demonstrated
a quantum hindsight effect, where probing of a quan-
tum system modifies and improves the predictions about
measurements already performed in the past. These ad-
vances may be used to improve the state preparation and
readout fidelity for quantum systems and increase their
potential for use as probes [12–17] of time-dependent in-
teractions and parameter estimation.

*murch@physics.wustl.edu
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