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Abstract  1 

Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) 2 

scaling to triggering processes. However, natural earthquake fault systems are composed of a 3 

variety of different geometries and materials and the associated heterogeneity in physical 4 

properties can cause a variety of spatial and temporal behaviors. This raises the question of 5 

how the triggering process and the structure interact to produce the observed phenomena.  6 

Here we present a simple earthquake fault model based on the Olami-Feder-Christensen 7 

(OFC) and Rundle-Jackson-Brown (RJB) cellular automata models with long-range 8 

interactions that incorporates a fixed percentage of stronger sites, or ‘asperity cells’, into the 9 

lattice.  These asperity cells are significantly stronger than the surrounding lattice sites but 10 

eventually rupture when the applied stress reaches their higher threshold stress. The 11 

introduction of these spatial heterogeneities results in temporal clustering in the model that 12 

mimics that seen in natural fault systems along with GR scaling. In addition, we observe 13 

sequences of activity that start with a gradually accelerating number of larger events 14 

(foreshocks) prior to a mainshock that is followed by a tail of decreasing activity 15 

(aftershocks).  This work provides further evidence that the spatial and temporal patterns 16 

observed in natural seismicity are strongly influenced by the underlying physical properties 17 

and are not solely the result of a simple cascade mechanism.  18 

 19 
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 22 

 23 
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Understanding the dynamics of seismic activity is fundamental to investigation of the 1 

earthquake process. Simple models of statistical fracture have been used to test many of the 2 

typical assumptions and effective parameters inherent in the complicated dynamics of the 3 

earthquake fault system and their relative variability [1-9]. Most of these models assume a 4 

spatially homogeneous fault and short-range stress transfer. However, inhomogeneity plays an 5 

important role in the spatial and temporal behavior of an earthquake fault [10]. While a 6 

number of OFC models with nearest-neighbor stress transfer have been expanded to include 7 

inhomogeneity, generally by varying individual parameters along the fault plane [11-17], 8 

there have been no investigations of the effect of large-scale inhomogeneities in long-range 9 

models. 10 

Stress transfer in natural earthquake faults is elastic and, as a result, OFC models with long-11 

range stress transfer produce more realistic representations [18,19]. Moreover, it has been 12 

shown in several studies that the physics of long-range models is significantly different from 13 

that of short-range stress transfer models (see Supplementary Material). For example, OFC 14 

models with short-range stress transfer are not in equilibrium, while for infinite-range stress 15 

transfer the model is in equilibrium [19,20]. In addition, if the stress transfer range becomes 16 

large enough, it is reasonable to approximate the model by a mean-field theory [19]. 17 

 A long standing problem in understanding the statistical distribution of earthquakes is how to 18 

reconcile GR scaling, which suggests the presence of a critical point, with the existence of 19 

foreshocks, aftershocks and quasi-periodic large events. Proposed mechanisms for 20 

understanding GR scaling, including self-organized critical phenomena (SOC) and cascade 21 

mechanisms, do not generate the clustering of foreshocks and aftershocks in conjunction with 22 

quasi-periodic large events. The approach presented here is to modify a model that explains 23 

GR scaling [19] by adding structural asperities which leave that scaling intact but produce 24 
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clustering of foreshocks and aftershocks as well as large, regularly recurring events (detailed 1 

discussion of modified GR scaling is included in the Supplementary Material).  2 

Inhomogeneities in the form of stress-relieving micro-cracks have been incorporated into 3 

long-range OFC [10,19] models, resulting in a better understanding of GR scaling [21].  In 4 

addition, inhomogeneities have been introduced into fully elastic models resulting in either 5 

power-law statistics of event sizes or a separate distribution combined with large, system size 6 

events [22]. However, to date, none of these approaches has reproduced both the temporal 7 

clustering and the complete magnitude-frequency distribution scaling regime that are primary 8 

features of natural seismicity and a critical component in the assessment of earthquake hazard. 9 

Motivated by the structure of natural faults, we introduce heterogeneity in the form of 10 

asperities into the OFC model with long-range stress transfer.  The introduction of these 11 

spatial heterogeneities produces temporal clustering similar to that seen in natural faults, 12 

including aftershocks, foreshocks and large events with constant return period.   13 

Spatial and temporal clustering has long been recognized in seismicity data, and significant 14 

efforts have focused on those that occur in the same general region as the mainshock and 15 

immediately before (foreshocks) or immediately after (aftershocks) its occurrence [23-28]. 16 

Aftershocks occur close to their triggering mainshocks and the aftershock rate generally 17 

decays with time, following the power law relation known as the modified Omori law [25,27]. 18 

On the other hand, while precursory seismic activity, or foreshocks, have been recorded 19 

before a number of large events, their signal is much more difficult to observe [29-33].  20 

One particular foreshock pattern, accelerating moment release (AMR) [30,32,34-37] is 21 

defined by the equation ε(t)=A+B(tf – t)m. ε(t) has been interpreted as either the accumulated 22 

seismic moment or Benioff strain release within a specified region, from some origin time t0 23 

to time t. A is a constant that depends on the background level of activity, tf is the time of the 24 

mainshock, B is negative and m is between 0.3 and 0.7. Ben-Zion et al. [38] analyzed the 25 
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deformation preceding large earthquakes and obtained a 1-D power-law time-to-failure AMR 1 

relationship before large events when the seismicity had broad frequency-size statistics, 2 

consistent with observed seismic activation before some large earthquakes [39,40]. 3 

The ETAS (Epidemic Type Aftershock Sequences) model [41,42] is a triggering model used 4 

to simulate natural foreshock and aftershock sequences.  It is based on the concept that every 5 

event, regardless of its size, increases the probability of later events. In ETAS, mainshocks 6 

trigger aftershocks, including those with magnitudes larger than themselves. If the largest 7 

event is triggered by smaller events, these are classified as foreshocks. While ETAS can 8 

replicate many clustering features seen in natural seismicity, recent work suggests that these 9 

triggering models may not fully explain the foreshock-mainshock-aftershock process and that 10 

other mechanisms may be important [32,43,44]. For example, Chen and Shearer [45] studied 11 

foreshock sequences for M>7 earthquakes in California and determined that they behaved 12 

more like swarms initiated by aseismic transients rather than triggered cascades or a 13 

nucleation process. These sequences occurred in areas of significant fault zone complexity, 14 

highlighting the importance of heterogeneity in the clustering process. 15 

Our model is a two-dimensional cellular automaton with periodic boundary conditions based 16 

on the OFC [8] and RJB [3,7] models that incorporates heterogeneity into the lattice. Every 17 

site can redistribute released stress to all z neighbors within a radius, or stress interaction 18 

range, R. A homogeneous residual stress σr is assigned to all the sites in the lattice. To impose 19 

spatial inhomogeneity on the lattice, two sets of failure thresholds are introduced; ‘regular 20 

sites’ with a failure threshold of σf and ‘asperity sites’ with a significantly higher failure 21 

threshold (σf
(asperity)=σf+Δσf).  22 

Initially, an internal stress variable, σj(t), is randomly distributed to each site; the stress on 23 

every site falls between the residual stress and failure stress thresholds (σr<σi(t=0)<σf). At t=0 24 
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no sites will have σi>σf. We use the so-called zero velocity limit [8,46,47] to simulate the 1 

increase in stress associated with the dynamics of plate tectonics. The lattice is searched for 2 

the site that is closest to failure; i.e., the site with minimum (σf-σi). Then, this amount of 3 

stress, (σf-σi), is added to each site such that the stress on at least one site is equal to its failure 4 

threshold. The site fails and some fraction of its stress, given by α[σf–(σr±η)], is dissipated 5 

from the system. α is the dissipation parameter (0<α≤1) which quantifies the portion of stress 6 

dissipated from the failed site and η is randomly distributed noise. Stress on the failed site is 7 

lowered to (σr±η) and the remaining stress is distributed to its predefined z neighbors. After 8 

the first site failure, all neighbors are searched to determine if the added stress caused 9 

additional failures. If so, the procedure is repeated.  If not, the time step, known as the plate 10 

update (pu), increases by unity and the lattice is searched again for the site closest to failure 11 

(i.e., with the smallest (σf-σi)). The size of each event is calculated from the total number of 12 

failures resulting from the initial failure. Stress is dissipated from the system both at regular 13 

lattice sites and through asperity sites placed randomly throughout the system. However, 14 

asperity sites fail less frequently than the regular sites, providing a time-dependent source and 15 

sink of stress: storing dissipated stress until an asperity failure releases it back into the system.  16 

Addition of these large failure threshold heterogeneities, or localized stress accumulators, 17 

results in a rich pattern of temporal clustering that includes the occurrence of large events 18 

with constant return period (here designated ‘characteristic events’), foreshocks and 19 

aftershocks.  20 

Here we investigate a system with 1% of randomly distributed asperity sites in a two-21 

dimensional lattice of linear size L=256, R=16, and periodic boundary conditions. Every 22 

failed site directly transfers stress to z=1088 neighbors. The homogeneous failure threshold 23 

for the regular sites is σf=2.0, homogeneous residual stress for the entire lattice is σr=1.0, with 24 
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random uniform noise distribution of η=[-0.1,+0.1]. The failure threshold for asperity sites is 1 

designated σf
(asperity)=σf+10.  2 

We compare our inhomogeneous model and a homogeneous model with no asperity sites in 3 

Fig.1. Time series of 6*10^5 p.u. and frequency distributions of 10^7 p.u are shown for three 4 

different values of stress dissipation parameter α. The first diagram (i) in each set is the time 5 

series for the heterogeneous model with 1% of asperity sites. Time steps in which an asperity 6 

site breaks are highlighted with a grey background shade. The second diagram (ii) is the time 7 

series for the homogeneous model (no asperity sites).  Comparison between the frequency 8 

distribution for different values of α, with and without asperities, is shown in Fig1.d. For the 9 

1% asperity model the lattice does not break randomly in time, despite the random spatial 10 

distribution of asperities. The asperity model produces large, repeating events that recur at 11 

constant intervals. Those characteristic events occur less frequently as α, the stress 12 

dissipation, increases. The distributions also confirm that, as α increases, the largest events 13 

become smaller, because higher stress dissipation suppresses large events [19].  The 1% 14 

asperity model generates larger events compared to the homogeneous model. 15 

In Fig.2, we isolate a single activation sequence for α=0.2 and α=0.4 (Fig.2a and 2b, 16 

respectively). Temporal clustering is clearly visible (Fig.2a and 2b, i and ii), starting with a 17 

gradually increasing number of larger events (foreshocks) and ending with a tail of decreasing 18 

activity (aftershocks). Results for α=0.6 (not shown) are qualitatively similar. The temporal 19 

clustering is primarily a result of the asperities.  Increased α again reduces the size of the 20 

largest events (Fig.2a and 2b, iii). In addition, the increasing number of events prior to the 21 

mainshock is analogous to the increased rate of activity, or AMR, observed before some large 22 

earthquakes (Fig.2a and 2b, iv).  Because changes in the bin length strongly affect the slope in 23 

Figs.2(a-iv) and 2(b-iv), additional study is needed for proper comparison with naturally 24 
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occurring earthquake sequences; however, increased stress dissipation appears to increase the 1 

steepness of the AMR curve (Fig.2a and 2b, iv).  This is the first time this complete set of 2 

phenomena has been observed in the OFC/RJB class of models. 3 

While most theoretical models of earthquake seismicity such as ETAS presuppose that all 4 

events are governed by the same physics, recent careful analysis has suggested that variation 5 

in foreshock-aftershock rates may be dependent on the local or regional rheology. Enescu et 6 

al. [44] demonstrated that swarm-type seismic activity with higher foreshock rates occurred in 7 

areas of California with relatively high surface heat flow, while more typical sequences 8 

occurred in regions with lower heat flow. McGuire et al. [48] analyzed hydroacoustic data 9 

along East Pacific Rise faults and identified sequences with higher foreshock rates and lower 10 

aftershock rates than previously observed in continental transform faults, or a relatively high 11 

ratio of foreshocks to aftershocks. 12 

We performed a similar analysis for a swarm in the southern Eyjafjarðaráll graben off the 13 

north coast of Iceland, late summer of 2012 (Fig.3a). Of the fifteen largest events (M≥2.5), 14 

eight were associated with foreshock and/or aftershock clusters that could be distinguished 15 

from the background activity. The spatiotemporal distribution of those foreshock and 16 

aftershock events, relative to their respective mainshocks, is plotted in Fig.3b, while the GR 17 

relationship and AMR plot are shown in Fig.3c and 3d, respectively. The similarity to Fig.2 18 

provides evidence for natural cases in which foreshock abundance is of the same order of 19 

magnitude and duration as aftershock sequences.  Although the spatial clustering seen in 20 

Fig.3b is not reproduced in the model (Fig.2ii), ongoing work suggests that this is a result of 21 

the random spatial distribution of asperities. 22 

In order to better understand how the relative production of foreshocks and aftershocks is 23 

governed by the model parameters, we investigated the length of the average foreshock and 24 
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aftershock periods for different values of α in our model. In general, lower dissipation favors 1 

more frequent, larger events and higher dissipation suppresses the large events (Fig.1.d). 2 

Stress dissipation also appears to have an effect on the relative length of those foreshock 3 

sequences. In Fig.4 we plot the relative length of the foreshock and aftershock sequences, 4 

normalized by the total time period of each sequence.  For low α values, the energy, or stress, 5 

available for foreshock activity is greater and initially results in an increased number of 6 

foreshocks, breaking more asperities. Once the mainshock occurs, there are fewer unbroken 7 

sites available for the occurrence of aftershocks. As a result, the aftershock sequence is 8 

shorter. On the other hand, in higher dissipation systems, it is not until the occurrence of the 9 

largest event, the mainshock, that enough stress is injected into the surrounding sites to 10 

initiate failure of large numbers of additional sites as aftershocks. High dissipation results in 11 

shorter foreshock sequences and relatively longer aftershock sequences (Fig.4). The average 12 

number of events is lower in models with higher α, but the length of the total activity period 13 

also appears to be related to α. Because higher values of alpha suppress large events, more 14 

plate updates are required to fail all the asperities in higher dissipation models.. 15 

In summary, we present a long-range OFC model with randomly distributed asperities. While 16 

the asperities do not change the GR relation proposed in [19], this heterogeneity introduces 17 

temporal clustering similar to that seen in natural fault systems. Unlike previous versions of 18 

the OFC model, we observe “quasi-periodic” characteristic earthquake sequences associated 19 

with periods of activity which start with gradually increasing numbers of larger events, or 20 

foreshocks, and end with a tail of decreasing activity, or aftershocks (Fig.2). The relative 21 

length of the foreshock and aftershock sequences varies, as observed in different tectonic 22 

regions (Fig.3). The length of the foreshock and aftershock activation is related to one or 23 

more controlling parameters of the model, including the stress dissipation (Fig.4), providing a 24 

potential explanation for the observation that certain tectonic regimes, such as mid-ocean 25 
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ridges, have measurable foreshock sequences, while others, such as crustal transform faults, 1 

produce few foreshocks.  2 

The results from this simple model suggest that asperities are partly responsible for the time-3 

dependent behavior observed in natural earthquake fault systems. In the model, asperities act 4 

as stress reservoirs that remove and store stress until their failure threshold is reached. Once 5 

that threshold is reached, the asperity failure releases a large amount of stress into the system 6 

over a short time. This often results in a very large event. Between asperity failures the model 7 

behaves as if it is an OFC model without asperities but with large dissipation, since the stress 8 

is removed and stored in the asperities, resulting in attenuated GR scaling and large, quasi-9 

periodic events. The smaller stochastic, GR scaling events which result from the triggering 10 

process have a small impact on the event statistics due to the large separation of failure 11 

thresholds. This interplay of triggering and structure provides new insights into the variation 12 

in the statistical event distributions from one model, or fault, to another.  That variation is 13 

governed by the distribution and strength of the asperities. 14 

The implication of our results is that the spatial and temporal patterns observed in natural 15 

seismicity are controlled by the fault structure as well as a triggering process. A fault with 16 

strong asperities will produce large quasi-periodic events combined with a small GR scaling 17 

region.  If there are no asperities then the dominant process will be triggering and the fault 18 

will produce a large GR scaling regime. This interpretation allows for a smooth transition 19 

between those two modes, as is seen in many natural fault systems.  This hypothesis can be 20 

tested.  We should be able to differentiate between faults with strong asperities and those with 21 

weaker or fewer weaker asperities, based upon their magnitude-frequency distribution. 22 

This work also demonstrates that it is possible to link the underlying physical properties to 23 

measurable parameters of the spatial and temporal patterns observed in natural seismicity, 24 
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such as Omori exponent, stress drop or inter-event time. If spatial heterogeneity affects the 1 

spatiotemporal behavior of earthquake sequences, including earthquake return period and 2 

precursory activity (foreshocks), then it should be possible to link stress dissipation and 3 

asperity distribution to the foreshock-aftershock duration and inter-event times, potentially 4 

allowing us to improve their predictability.  The fact that the precursory patterns in 5 

earthquake fault networks are controlled by these spatial heterogeneities provides a new 6 

paradigm with which to investigate and quantify the relationship between fault structure, 7 

spatiotemporal clustering, and earthquake predictability.  8 
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 1 

Fig.1. Time series of events (number of failed sites) over 6*105 plate updates for: (a) α=0.6, 2 

(b) α=0.4 and (c) α=0.2; (i) 1% of randomly distributed asperity sites (shaded background are 3 

times when an asperity site breaks); (ii) homogeneous model with the same conditions as (i).  4 

(d) Comparison between frequency distributions n(s), with and without 1% of randomly 5 

distributed asperity sites, for three values of α. Slope of the linear fit to a-iii=2.00, b-iii=1.85, 6 

and c-iii=1.65. (e) Close-up of the box in (d). 7 
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 1 

Fig.2. (a-i) Number of failed sites at each time step (shaded background as in Fig.1) for α=0.2. 2 

Time is binned into coarse-grained units of Δt=500pu. (a-ii) Distance of each event from the 3 

largest event in the sequence (mainshock, red cross). (a-iii) Distribution of events, n(s), during 4 

the period (a-i).  Slope for the straight line fit is 1.6 (a-iv) Cumulative number of events 5 

greater than the defined threshold versus coarse-grained time. (b-i, ii, iii, iv) as in (a) for stress 6 

dissipation of 40% (α=0.4).  Slope of the linear fit to b-iii is 1.85. 7 
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 1 

Fig.3. (a) Seismicity for swarm event, southern Eyjafjarðaráll graben, Aug 20, 2012 through 2 

March 25, 2013. Most activity occurred between the graben and the Húsavík-Flatey fault. (b) 3 

Spatiotemporal distribution of seismicity associated with the twelve largest events in the 4 

sequence in (a). Note that earthquake magnitude is logarithmic, where every unit increase is 5 

equivalent to approximately 32 times the energy increase.  (c) GR distribution for the longest 6 

single sequence in the swarm, M≥Mc = 2.0, Mc is minimum magnitude of completeness.  (d) 7 

Cumulative number of events greater than Mc versus time relative to the mainshock (star, 8 

M=4.76). Data collected by the SIL network was provided by the Icelandic Met Office 9 

(en.vedur.is).  10 
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 1 

Fig.4. The average time period associated with foreshocks and aftershocks as a function of α, 2 

1% of randomly distributed asperity sites.  FT=Foreshock time; AT=Aftershock time; 3 

Red=FT/(FT+AT); Blue=AT/(FT+AT); (FT+AT)=total sequence. 4 


