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In neural circuits, statistical connectivity rules strongly depend on cell-type identity. We study
dynamics of neural networks with cell-type specific connectivity by extending the dynamic mean
field method, and find that these networks exhibit a phase transition between silent and chaotic
activity. By analyzing the locus of this transition, we derive a new result in random matrix theory:
the spectral radius of a random connectivity matrix with block-structured variances. We apply our
results to show how a small group of hyper-excitable neurons within the network can significantly
increase the network’s computational capacity by bringing it into the chaotic regime.
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The theory of random matrices has diverse applica-
tions in nuclear [1] and solid-state [2, 3] physics, num-
ber theory and statistics [4] and models of neural net-
works [5–8]. The increasing use of boolean networks to
model gene regulatory networks [9–11] suggests that ran-
dom matrix theory may advance our understanding of
those biological systems as well. Most existing theoreti-
cal results pertain to matrices with values drawn from a
single distribution, corresponding to randomly connected
networks with a single connectivity rule and cell-type.
Recent experimental studies describe in increasing detail
the heterogeneous structure of biological networks where
connection probability depends strongly on cell-type [12–
17]. As a step towards bridging this gap between theory
and experiment, we extend here mean-field methods used
to analyze conventional randomly connected networks to
networks with multiple cell-types and allow for cell-type-
dependent connectivity rules. We focus here on neural
networks.

Randomly connected networks of one cell-type were
shown to have two important properties. First, they
undergo a phase transition from silent to chaotic activ-
ity as the variance of connection strength is increased
[7, 8]. Second, such networks reach optimal computa-
tional capacity near the critical point [18, 19] in a weakly
chaotic regime. We find both phenomena in networks
with multiple cell-types. Importantly, the effective gain
of multi-type networks deviates strongly from predictions
obtained by averaging across the cell types, and in many
cases these networks show greater computational capac-
ity compared to networks with cell-type independent con-
nectivity.

The starting point for our analysis of recurrent activity
in neural networks is a firing-rate model where the acti-
vation xi(t) of the ith neuron determines its firing-rate
φi(t) through a nonlinear function φi(t) = tanh(xi). The
activation of the ith neuron depends on the firing-rate of

all N neurons in the network:

ẋi(t) = −xi(t) +

N
∑

j=1

Jijφj(t), (1)

where Jij describes the connection weight from neuron
j to i. Previous work [7] considered a recurrent ran-
dom network where all connections are drawn from the
same distribution. There, the matrix elements was drawn
from a Gaussian distribution with mean zero and vari-
ance g2/N , where g defines the average synaptic gain
in the network. According to Girko’s circular law, the
spectral density of the random matrix J in this case is
uniform on a disk with radius g [20, 21]. When the real
part of some of the eigenvalues of J exceeds 1, the qui-
escent state xi(t) = 0 becomes unstable and the net-
work becomes chaotic [7]. Thus, for networks with one
cell-type the transition to chaotic dynamics occurs when
g = 1. The chaotic dynamics persist even in the presence
of noise, but the critical point gcrit shifts to values > 1,
with gcrit = 1 − σ2 log σ2 for small noise intensities σ2

and gcrit =
√

π/2σ for large noise [8].

We now consider networks with D cell-types, each with
a fraction αd of neurons in it. The mean connection
weight is 〈Jij〉 = 0. The variances N〈J2

ij〉 = g2cidj
depend

on the cell-type of the input (c) and output (d) neurons;
where ci denotes the group neuron i belongs to. In what
follows, indices i, j = 1, . . . , N and c, d = 1, . . . , D corre-
spond to single neurons and neuron groups, respectively.
Averages over realizations of J are denoted by 〈·〉. It
is convenient to represent the connectivity structure us-
ing a synaptic gain matrix G. Its elements Gij = gcidj

are arranged in D2 blocks of sizes Nαc × Nαd (Fig.
1a-c, top insets). The mean synaptic gain, ḡ, is given

by N−1(
∑N

i,j=1
G2

ij)
1

2 = (
∑D

c,d=1
αcαdg

2
cd)

1

2 . Defining

J0
ij ∼ N

(

0, N−1
)

(but see [22] for discussion of non-

Gaussian entries) and nd = N
∑d

c=1
αc allows us to

rewrite Eq. (1) in a form that emphasizes the separate



2

contributions from each group to a neuron:

ẋi = −xi +
D
∑

d=1

gcid

nd
∑

j=nd−1+1

J0
ijφj (t) . (2)

We use the dynamic mean field approach [5, 7, 23] to
study the network behavior in the N → ∞ limit. Aver-
aging Eq. (2) over the ensemble from which J is drawn
implies that only neurons that belong to the same group
are statistically identical. Therefore, to represent the net-
work behavior it is enough to look at the activities ξd(t)
of D representative neurons and their inputs ηd (t).

The stochastic mean field variables ξ and η will approx-
imate the activities and inputs in the full N dimensional
network provided that they satisfy the dynamic equation

ξ̇d (t) = −ξd (t) + ηd (t) , (3)

and provided that ηd (t) is drawn from a Gaussian distri-
bution with moments satisfying the following conditions.
First, the mean 〈ηd(t)〉 = 0 for all d. Second, the cor-
relations of η should match the input correlations in the
full network, averaged separately over each group. Using
Eq. (3) and the property N

〈

J0
ijJ

0
kl

〉

= δikδjl we get the
self-consistency conditions:

〈ηc (t) ηd (t+ τ)〉 =
D
∑

a,b=1

na
∑

j=na−1+1

nb
∑

l=nb−1+1

gcagdb
〈

J0
ijJ

0
kl

〉

〈φ [xj(t)] φ [xl(t+ τ)]〉 = δcd

D
∑

b=1

αbg
2
cbCb(τ), (4)

where 〈·〉 denotes averages over i = nc−1 + 1, . . . , nc

and k = nd−1 + 1, . . . , nd in addition to average
over realizations of J. The average firing rate cor-
relation vector is denoted by C (τ). Its compo-
nents (using the variables of the full network) are
Cd(τ) = 1

Nαd

∑nd

i=nd−1+1
〈φ[xi(t)]φ[xi(t+ τ)]〉, translat-

ing to Cd(τ) = 〈φ[ξd(t)]φ[ξd(t+ τ)]〉 using the mean field
variables. Importantly, the covariance matrix H(τ) with
elements Hcd (τ) = 〈ηc (t) ηd (t+ τ)〉 is diagonal, justify-
ing the definition of the vector H = diag (H). With this
in hand we rewrite Eq. (4) in matrix form as

H (τ) = MC (τ) , (5)

where M is a constant matrix reflecting the network con-
nectivity structure: Mcd = αdg

2
cd.

A trivial solution to this equation is H(τ) = C(τ) = 0
which corresponds to the silent network state: xi(t) =
0. Recall that in the network with a single cell-type,
the matrix M = g2 is a scalar and Eq. (5) reduces to
H(τ) = g2C(τ). In this case the silent solution is stable
only when g < 1. For g > 1 the autocorrelations of η
are non-zero which leads to chaotic dynamics in the N
dimensional system [7].
In the general case (D ≥ 1), Eq. (5) can be projected

on the eigenvectors of M leading to D consistency con-
ditions, each equivalent to the single group case. Each
projection has an effective scalar given by the eigenvalue
in place of g2 in the D = 1 case. Hence, the trivial solu-
tion will be stable if all eigenvalues of M have real part
< 1. This is guaranteed if Λ1, the largest eigenvalue of
M, is < 1 [24]. If Λ1 > 1 the projection of Eq. (5) on the
leading eigenvector of M gives a scalar self-consistency
equation analogous to the D = 1 case for which the triv-
ial solution is unstable. As we know from the analysis of
the single cell-type network, this leads to chaotic dynam-
ics in the full network. Therefore Λ1 = 1 is the critical
point of the multiple cell-type network.

Another approach to show explicitly that Λ1 = 1 at the
critical point is to consider first order deviations in the
network activity from the quiescent state. Here C(τ) ≈
∆(τ) where ∆(τ) is the autocorrelation vector of the
activities with elements ∆d(τ) = 〈ξd(t)ξd(t+ τ)〉. By
invoking Eq. (3) we have

H(τ) =

(

1− d2

dτ2

)

∆(τ). (6)

Substituting Eq. (6) into Eq. (5) leads to an equation of
motion for a particle with coordinates ∆(τ):

d2∆(τ)

dτ2
= (I−M)∆(τ). (7)

The particle’s trajectories depend on the eigenvalues
of M. The first bifurcation (assuming the elements of M
are scaled together) occurs when Λ1 = 1, in the direction
parallel to the leading eigenvector. Physical solutions
should have ‖∆(τ)‖ < ∞ as τ → ∞ because ∆(τ) is an
autocorrelation function. When all eigenvalues of M are
smaller than 1 the trivial solution ∆(τ) = 0 is the only
solution (in the neighborhood of xi(t) = 0 where our ap-
proximation is accurate). At the critical point (Λ1 = 1)
a non trivial solution appears, and above it finite auto-
correlations lead to chaotic dynamics in the full system.
The eigenvalue spectrum of J is circularly symmetric

in the absence of correlation between matrix entries as
is evident from numerical simulations and direct calcu-
lations using random matrix theory techniques [25]. To
derive the radius r of the support of its spectral density,
one can use the following scaling relationship. If all ele-
ments of the matrix gcd are multiplied by a constant κ,
the radius r will scale linearly with κ. At the same time,
Mcd ∝ g2cd, so Λ1 ∝ κ2. Thus, r ∝ √

Λ1. The propor-
tionality constant can be determined by noting that for
both single and multiple cell-type networks this transi-
tion occurs when a finite mass of the spectral density of
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FIG. 1. Spectra and dynamics of networks with cell-type dependent connectivity (N = 2500). The support of the spectrum
of the connectivity matrix J is accurately described by

√
Λ1 (radius of blue circle) for different networks. Top insets - the

synaptic gain matrix G summarizes the connectivity structure. Bottom insets - activity of representative neurons from each
type. The line ℜ{λ} = 1 (purple) marks the transition from quiescent to chaotic activity. (a) An example chaotic network
with two cell-types. The average synaptic gain ḡ (radius of red circle) incorrectly predicts this network to be quiescent. (b) An
example silent network. Here ḡ incorrectly predicts this network to be chaotic. (c) An example network with six cell-types. In
all examples the radial part of the eigenvalue distribution ρ(|λ|) (orange line) is not uniform [22].

J has real part > 1, which can also be verified by direct
computation of the largest Lyapunov exponent [22]. The
transition occurs at Λ1 = 1, meaning that for Λ1 = 1 the
eigenvalues of J are bounded in the unit circle r = 1, so
in general:

r(α,g) =
√

Λ1 =
√

max [λ(M)]. (8)

Predictions for the radius according to Eq. (8) matched
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FIG. 2. Autocorrelation modes. Example networks (N =
1200) have 3 equally sized groups with α, g such that M

is symmetric. (a) When D⋆ = 1 autocorrelations maintain
a constant ratio independent of τ . (b) Rescaling by the
components uR

1c collapses the autocorrelation functions (Here
Λ1 = 20,Λ2 = 0.2,Λ3 = 0.1). (c) When D⋆ = 2, the autocor-
relation functions are linear combinations of two autocorrela-
tion “modes” that decay on different timescales. Projections
of these functions 〈uR

c |∆(τ )〉 are shown in (d). Only pro-
jections on |uR

1 〉, |uR

2 〉 are significantly different from 0 (Here
Λ1 = 20,Λ2 = 16,Λ3 = 0.1). Insets show the variance of
∆ (τ ) projected on

∣

∣uR

c

〉

averaged over 20 networks in each
setting.

numerical simulations for a number of different matrix
configurations (Fig. 1a,b). Eq. (8) also holds for net-
works with cell-type independent connectivity, in which
case Λ1 = g2 and r = g. Importantly, r differs quali-
tatively from the mean synaptic gain ḡ. The inequality√
Λ1 6= ḡ is a signature of the block structured variances.

It is not observed in the case where the variances have
columnar structure [26] or when the Jij ’s are randomly
permuted.

Next we analyze the network dynamics above the
critical point. In the chaotic regime the persistent
population-level activity is determined by the struc-
ture matrix M. Consider the decomposition M =
∑D

c=1
Λc|uR

c 〉〈uL
c | where |uR

c 〉, 〈uL
c | are the right and left

eigenvectors ordered by the real part of their correspond-
ing eigenvalues ℜ{Λc}, satisfying 〈uL

c |uR
d 〉 = δcd. We

find, with analogy to the analysis of the scalar self con-
sistency equation in [7] that the trivial solution to Eq. (5)
is unstable in the subspace UM = span{|uR

1 〉, . . . , |uR
D⋆〉},

where D⋆ is the number of eigenvalues of M with real
part > 1. In that subspace the solution to Eq. (5) is
a combination of D⋆ different autocorrelation functions.
In the D −D⋆ dimensional orthogonal complement sub-
space U⊥

M
the trivial solution is stable. Consequently,

the vectors H(τ),∆(τ) are significant in UM with ≈ 0
projection on any vector in U⊥

M
(Fig. 2). Note that

for asymmetric M, |uR
c 〉 are not orthogonal and U⊥

M
is

spanned by the left rather than the right eigenvectors:
U⊥

M
= span{〈uL

D⋆+1|, . . . , 〈uL
D|}.

In the special case D⋆ = 1 we can write H(τ) =
uR
1 qH(τ) and ∆(τ) = uR

1 q∆(τ) where qH(τ), q∆(τ) are
scalar functions of τ determined by the nonlinear self-
consistency condition. Therefore, neurons in all groups
have the same autocorrelation function with different am-
plitudes. The ratio of amplitudes is determined by the
components uR

1c of the leading right eigenvector ofM (see
Fig. 2a,b) as ∆c(τ)/∆d(τ) = uR

1c/u
R
1d. This ratio is inde-

pendent of τ and the firing rate nonlinearity. The latter
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FIG. 3. Learning capacity is primarily determined by
√
Λ1,

the effective gain of the network. (a) The learning index for
four pure frequency target functions (Ω0 = π/120) plotted
as a function of the radius r =

√
Λ1(α1, γ). The training

epoch lasted approximately 100 periods of the target signal.
Each point is an average over 25 networks with N = 500,
ǫ = 0.2 and different values of α1 and γ. The line is a moving
average of these points for each frequency. (b) The same data
averaged over the target frequencies shown as a function of
γ and α1. Contour lines of lΩ (white) and of

√
Λ1 (black)

coincide approximately in the region where lΩ peaks.

affects only the overall amount of activity in the network
but not the ratio of activity between the subgroups.
We illustrate how these results give insight into a per-

plexing question in computational neuroscience - how
can a small number of neurons have a large effect on
the representational capacity of the whole network? In
adults, newborn neurons continuously migrate into the
existing neural circuit in the hippocampus and olfactory
bulb regions [27]. Impaired neurogenesis results in strong
deficits in learning and memory. This is surprising since
the young neurons, although hyperexcitable, constitute
only a very small fraction (< 0.1) of the total network.
To better understand the role young neurons may play,
we analyzed a network with D = 2 groups of neurons:
group 1 of young neurons that is significantly smaller
than group 2 of mature neurons (α1 ≪ α2). The connec-
tivity within the existing neural circuit is such that by
itself that subnetwork would be in the quiescent state:
g22 = 1 − ǫ < 1. To model the increased excitability of
the young neurons all connections of these neurons were
set to: g12 = g21 = g11 = γ > 1− ǫ.
We analyzed the network’s capacity to reproduce a

target output pattern f(t). The activity of the neurons
serves as a “reservoir” of waveforms from which f(t) is
composed. The learning algorithm in [28] allows us to

find the vector w such that z(t) =
∑N

i=1
wiφi(t) = f(t),

where the modified dynamics have Jij → Jij + uiwj and
u is a random vector with O(1) entries. For simplicity we
choose periodic target functions f(t) = sin(Ωt), and de-

fine the learning index as the fraction of power that the
output function z(t) has at the target frequency. The
index varies from 0 to 1, and is computed by averaging
over 50 cycles.
Performance depends primarily on Λ1 and not on the

network structure, peaking for
√
Λ1 ≈ 1.5 (Fig. 3). This

is directly related to the maximal learning capacity ob-
served at g ≈ 1.5 in networks with a single cell-type [28],
further supporting the identification of

√
Λ1 as the effec-

tive gain. Importantly, because of the block structured
connectivity, the effective gain is larger than the average
gain (

√
Λ1 > ḡ), for all values of γ and α1 [22]. In other

words, for the same average connection strength, net-
works with block-structured connectivity have a higher
effective gain that can place them in a regime with larger
learning capacity compared to networks with shuffled
connections, demonstrating that a small group of neu-
rons could place the entire network in a state conducive
to learning. Moreover, since increases in average con-
nection strength are generally associated with increased
metabolic cost, networks with block-structured connec-
tivity can provide a more metabolically efficient way to
perform computation compared to statistically homoge-
neous networks.
Outgoing connections from any given neuron are typi-

cally all positive or all negative, obeying Dale’s law [29].
Within random networks, this issue was addressed by
Rajan and Abbott [26] and Tao [30] who computed the
bulk spectrum and the outliers of a model where columns
of J are separated to two groups, each with its offset
and element variance. The dynamics of networks with
cell-type-dependent connectivity that is offset to respect
Dale’s law were addressed in [31] with some limitations,
and remain an important problem for future research.
Ultimately, neural network dynamics need to be con-

sidered in relation to external inputs. The response prop-
erties of networks with D = 1 have been recently worked
out [19, 32]. The analogy between the mean field equa-
tions suggests that our results can be used to understand
the non-autonomous behavior of multiple cell-type net-
works.
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