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Turbulence and dynamo induced by the magnetorotational instability (MRI) are analyzed using quasi-linear
statistical simulation methods. It is found that homogenous turbulence is unstable to a large scale dynamo
instability, which saturates to an inhomogenous equilibrium with a strong dependence on the magnetic Prandtl
number (Pm). Despite its enormously reduced nonlinearity, the dependence of the angular momentum transport
on Pm in the quasi-linear model is qualitatively similar to that of nonlinear MRI turbulence. This indicates that
recent convergence problems may be related to large scale dynamo and suggests how dramatically simplified
models may be used to gain insight into the astrophysically relevant regimes of very low or high Pm.
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Understanding the complex web of nonlinear interactions
that are important for the sustenance of turbulence induced by
the magnetorotational instability (MRI) [1] has proven to be
a difficult undertaking. Indeed, despite many theoretical and
computational studies, results with quantitative application to
most regimes relevant for astrophysical disks remain elusive.
The basic problem is that astrophysical objects generally con-
tain an enormous range of dynamically important scales, as
measured by the fluid and magnetic Reynolds numbers (Re
and Rm respectively). Of course, any simulation is necessar-
ily limited in its resolvable scales, and the question of whether
a set of results would change significantly with resolution be-
comes subtle and very difficult to answer conclusively. In the
case of MRI turbulence, all indications are that at currently
available resolutions, simulation convergence depends on the
details of the computational domain [2–8], and the scaling of
pertinent quantities such as the turbulent momentum transport
remains unclear. Of particular importance [9–12] is the scal-
ing with magnetic Prandtl number Pm = Rm/Re; astrophys-
ical objects invariably have very high or low Pm but these
regimes are extremely computationally challenging. Indeed,
it is currently unclear whether MRI turbulence at very low Pm
is sufficiently virulent to explain the accretion rate inferred
from luminosity observations of compact objects, since tur-
bulent activity seems to decrease with Pm or disappear alto-
gether [6, 9, 13] (but see Refs. [12, 14]). A large-scale dynamo
generating strong azimuthal magnetic fields [7, 15–19] seems
to be a key component of the turbulence, although the exact
nature of the interactions and importance of different effects
(e.g., vertical stratification, compressibility) remains unclear.

In this letter we study MRI turbulence and dynamo in
the zero net-flux unstratified shearing box using novel quasi-
linear statistical simulation methods (from hereon we shall
use the term second-order cumulant expansion (CE2) [20],
although the term stochastic structural stability theory (S3T)
[21] is also common and pertains to similar ideas). This
involves driving an ensemble of linear fluctuations in mean
fields that depend only on the vertical co-ordinate (z), with the
nonlinear stresses of these fluctuations self-consistently driv-
ing evolution of the mean fields. Our motivation for this is
two-fold: Firstly, despite being a rather recent subject, direct

statistical simulation – the method of simulating flow statistics
rather than an individual realization – has proven to be a useful
computational technique in a variety of applications [22–25].
An equilibrium of the system is in general a turbulent state,
and analysis of its stability properties and bifurcations can be
very rewarding. Secondly, fully developed MRI turbulence is
incredibly complex and we feel there is much useful insight to
be gained by selectively removing important physical effects
in the hope of discovering underlying principles. Motivated
by the idea that strong linear MRI growth is possible at all
scales due to nonmodal effects [26], our quasi-linear model
involves neglecting almost all of the nonlinear interactions in
the system and can easily be systematically reduced further.

Remarkably, despite the strongly reduced nonlinearity, we
demonstrate that the qualitative dependence of saturated CE2
states on Pm is the same as nonlinear MRI turbulence. In par-
ticular, at fixed magnetic Reynolds number (Rm), an increase
in Pm causes an increase in the intensity of the turbulence (as
measured by the angular momentum transport), despite the
fact that the system is becoming more dissipative. This il-
lustrates that the strong Pm dependence of the MRI [9] is (at
least partially) due to increased large-scale dynamo action at
higher Pm; this is the only physical effect retained in the CE2
model beyond simple excitation of linear waves (which show
the opposite trend). As discussed, CE2 is very well suited to
the study of bifurcations between turbulent states of the sys-
tem. We see two important bifurcations – the first marking
the onset of a dynamo instability of homogenous turbulence,
the second a transition to a time-dependent state – and the Pm
dependence of several aspects of these transitions is strongly
suggestive. It is our hope that gaining insight into the cause of
such behavior will allow extrapolation to the most astrophysi-
cally relevant low/high Pm regimes. Note that the approach is
quite distinct from, and complementary to, previous nonlinear
dynamics work on MRI dynamo [27, 28], which has focused
on searching for cycles in the full nonlinear system at low Rm.
Strong similarities can be drawn between the dynamo mecha-
nisms identified in these works and magnetic field generation
in our CE2 model [22].

The starting point of our study is the local incompress-
ible MHD equations in a shearing background in the rotating
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frame,

∂u
∂t
− qΩx

∂u
∂y

+ (u · ∇) u + 2Ω ẑ × u =

− ∇p + B · ∇B + qΩux ŷ + ν̄∇2u,
∂B
∂t
− qΩx

∂B
∂y

= −qΩBx ŷ + ∇ × (u × B) + η̄∇2B,

∇ · u = 0, ∇ · B = 0. (1)

These are obtained from the standard MHD equations for a
disk with radial stratification by considering a small Carte-
sian volume (at r0) co-rotating with the fluid at angular veloc-
ity Ω (r) ∼ Ω0r−q. In this limit the velocity shear is linear,
U0 = −qΩxŷ, and u denotes velocity fluctuations about this
background. The directions x, y, z in Eq. (1) correspond re-
spectively to the radial, azimuthal and vertical directions in
the disk. The use of dimensionless variables in Eq. (1) means
Ω ≡ Ω (r0) = 1, and the bulk flow Reynolds numbers are
Re = q/ν̄, Rm = q/η̄. Throughout this work we consider a
homogenous background (no vertical stratification), with zero
net magnetic flux, and use shearing box boundary conditions
(periodic in y, z, periodic in the shearing frame in x) with an
aspect ratio

(
Lx, Ly, Lz

)
= (1, π, 1).

The basis of our application of CE2 to MRI turbu-
lence is a splitting of Eq. (1) into its mean and fluctuat-
ing parts, as defined by the horizontal average, f (x) (z) ≡
(LxLy)−1

´
dxdy f (x). This averaging is chosen because it is

the simplest possible that allows for the strong z-dependent
By observed in nonlinear simulations [14, 17]. Schematically
representing the state of the system (u, B, P) as U, a decom-
position of Eq. (1) into equations for Ū and u′ = U − Ū gives

∂tŪ = Amean · Ū + R (u′, u′), (2a)

∂tu′ = A f luct

(
Ū

)
· u′ +

{
R

(
u′, u′

)
− R (u′, u′)

}
+ ξt. (2b)

Here Amean and A f luct

(
Ū

)
are the linear operators for the

mean and fluctuating parts, R (u′, u′) represents the nonlinear
stresses, and ξt is an additional white-in-time driving noise
term. The principle approximation, which is key to CE2 and
leads to the quasi-linear system, is to neglect the eddy-eddy
nonlinearity

{
R (u′, u′) − R (u′, u′)

}
in Eq. (2b), causing the

only nonlinearity to arise from the coupling to Eq. (2a). The
driving noise ξt can be considered either a physical source of
noise [20], or a particularly simple closure representing the
effects of the neglected nonlinearity [21].

Rather than evolving the non-deterministic Eq. (2b), con-
sider the single time correlation matrix of an ensemble of fluc-
tuations Ci j (x1, x2, t) =

〈
u′i (x1, t) u′j (x2, t)

〉
, where 〈·〉 denotes

the average over realizations of ξt. Multiplying Eq. (2b) by
∂tu (x2) followed by an ensemble average leads to [21, 24]

∂tC = A f luct

(
Ū

)
· C + C · A f luct

(
Ū

)†
+ Q, (3)

where Q = 〈ξ (x1, t) ξ (x2, t)〉 is the spatial correlation of the
noise [29]. Using homogeneity in x, y, Eq. (3) can be reduced

to 4 dimensions with the change of variables, x = x1 − x2,
y = y1 − y2. Assuming ergodicity – the equivalence of the x, y
and ensemble averages – the nonlinear stresses R (u′, u′) in
the mean field equations [Eq. (2a)] can be calculated directly
from C. With this change Eqs. (2a) and (3) comprise the CE2
system. Aside from the noise, conservation laws are inherited
from the nonlinear system (e.g., energy, magnetic helicity).

The MRI mean field equations are very simple,

∂t

(
Ūx, Ūy

)
=

(
2Ūy, (q − 2) Ūx

)
+

(
Rx,Ry

)
∂t

(
B̄x, B̄y

)
=

(
0,−qB̄x

)
+

(
Mx,My

)
, (4)

with ∂zŪz = ∂zB̄z = 0 due to the divergence constraints. The
nonlinear stresses arising from the fluctuating variables, R j =〈
− (u′ · ∇u′) j + (b′ · ∇b′) j

〉
and M j =

〈
(∇ × (u′ × b′)) j

〉
, are

calculated by applying appropriate derivative operators to the
C matrix. We solve for C in the variables, u ≡ u′x, b ≡ b′x,
ζ ≡ ∂zu′y − ∂yu′z, η ≡ ∂zb′y − ∂yb′z, which conveniently reduces
the dimension of C and removes divergence constraints. The
equations, however, become very complex and we do not re-
produce them here (Mathematica scripts are used to automat-
ically generate the required C++ code [30]). We use a Fourier
pseudo-spectral method (with 3/2 dealiasing) in the shearing
frame with the remapping method of Ref. [31], and a semi-
implicit Runge-Kutta time-integrator.

In all calculations presented here, we initialize with C = 0.
The spatial correlation of ξt is chosen to drive each mode
equally in energy [22], multiplied by an amplitude factor fξ.
While we have explored the dependence on fξ, for simplic-
ity all calculations in this letter use the same value ( fξ = 4
in our normalization) and we change the physical parame-
ters Rm and Pm to illustrate bifurcations of the system. For
reference, this noise level drives homogenous turbulence at
Rm = 12000, Pm = 1 to a mean total energy of ∼0.05.
Rm = 12000 computations use the resolution 40×80×(4×64)2

(note that dealiasing is not required in x and y). To ensure ac-
curacy we have tested conservation of energy, as well as dou-
bling the resolution (to 80 × 160 × (4 × 128)2) for Pm = 1, 4.

The MRI dynamo instability In contrast to the original
MRI equations [Eq. (1)], a general stable equilibrium of the
CE2 system [Eqs. (3) and (4)] corresponds to a statistically
stationary turbulent state within the quasi-linear approxima-
tion. If such an equilibrium is rendered unstable by a change
in system parameters, this turbulent state is no longer possible
and a rearrangement of the mean fields and flow statistics will
occur. This type of instability has no counterpart in standard
MHD stability theory; it pertains to the idea that the collec-
tive effect of the ensemble of fluctuating fields is to re-enforce
perturbations to the mean fields through the nonlinear stresses,
causing instability. Of course, such ideas are familiar in mean-
field electrodynamics [32], and the CE2 method seems well
suited for more general study of large scale dynamos.

Homogenous turbulence, with
(
Ū, B̄

)
= 0, is the simplest

non-trivial equilibrium of the CE2 MRI system, with all non-
linear stresses vanishing identically. However, at fixed noise,
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FIG. 1. Growth rate γDyn of the mean field, B̄y = B̄y0 (z) eγDynt, as a
function of magnetic Reynolds number at Pm = 1, 2, 4 and 8.

as Re and Rm are increased from zero this equilibrium be-
comes unstable around Rm ≈ 1500 (this value changes with
noise level). Such behavior is illustrated in Fig. 1, which
shows the growth rate γDyn of this dynamo instability. This
is calculated by first evolving Eq. 3 to the homogenous equi-
librium by artificially removing the nonlinear feedback, then
introducing a very small (∼10−15) random mean field (with
the amplitudes of Ū, B̄x 1/10 that of B̄y). (While it is possible
to solve for the Floquet eigenspectrum directly, this is chal-
lenging due to the grid size.) Following the introduction of
mean-field feedback there is a sustained period of exponen-
tial growth in B̄ for Rm & 1500. The observed eigenmodes
are sinusoidal in z (ensured by spatial homogeneity) although
not generally the largest mode in the box, satisfy Bx � By

and seem to have Ū = 0 [33]. While it is certainly expected
that γDyn increase strongly with Rm – fluctuations grow to
a higher amplitude and there is less B̄ dissipation – its de-
pendence on Pm is more interesting and suggestive. An in-
crease in Pm implies more dissipation (through increasing ν̄),
yet Fig. 1 shows that γDyn can increase, particularly at higher
Rm. In addition, ∂

∂RmγDyn (Rm) increases with Pm, with po-
tentially interesting consequences for the very high Rm limit.
The instability is driven by the radial stress Mx causing an
increase in B̄x, which in turn drives B̄y through the Ω effect,
−qB̄y [see Eq. (4)]. The effect of the azimuthal stress My is
always negative. This is identical to the dynamo mechanism
studied in detail in Refs. [17, 34], and has strong similarities
to exact nonlinear dynamo solutions at low Rm [27, 28].

Of more relevance to fully developed turbulence are the sat-
uration characteristics of the dynamo instability. To save com-
putation, we initialize with moderately strong random mean
fields (amplitude of B̄y ≈ 0.01, B̄x and Ū initialized at 1/10
that of B̄y – we have also studied initialization with the largest
mode of the box obtaining similar results). As Rm is increased
and homogenous equilibrium rendered unstable, the system
saturates to a new CE2 equilibrium with a strong background
B̄y that varies on the largest scale in the box, as illustrated
by the example in Fig. 2(a). As we increase Rm further, a
second bifurcation occurs, at which the inhomogenous equi-
librium appears to become unstable and the system transitions
to a quasi-periodic time-dependent state. An example of this
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FIG. 2. Evolution of B̄y as a function of (z, t) at Pm = 4 for (a)
Rm = 4500, time-independent saturated state, and (b) Rm = 12000,
time-dependent saturated state. (c) Magnitude of B̄y as measured by(
B̄y

)
rms

=

(
1
Lz

´
dz

∣∣∣B̄y

∣∣∣2)1/2
at saturation, as a function of Rm and

Pm. The shaded regions illustrate the approximate maxima and min-
ima of the time-dependent B̄y when the system did not reach a time-
independent statistical equilibrium. Gray points (point styles as for
CE2 results) illustrate the mean values of equivalent driven nonlinear
simulations, with error-bars illustrating the approximate maxima and
minima (the slight horizontal offset of Pm = 1, 4 points is for clarity,
the same Rm is used for all Pm).

state, which occurs more readily at higher Pm, is shown in
Fig. 2(b). These two bifurcations – first to an inhomogenous
state dominated by mean fields, then the loss of equilibrium of
this state – bear a strong resemblance to the transitions seen in
hydrodynamic plane Couette flow [22], in which the second
transition is associated with self-sustaining behavior. Such a
self-sustaining process is not possible within our model due to
the choice of 1-D mean-fields (as opposed to 2-D in Ref. [22]),
but the similarity as well as its Pm dependence is striking. Un-
derstanding physical mechanisms behind the loss of equilib-
rium may give useful insights into the self-sustaining dynamo
that is so fundamental to zero net-flux turbulence.

This information is presented more compactly in Fig. 2(c),
which illustrates the saturated B̄y amplitude over a range of
Rm, Pm. The dependence of the saturated amplitude on Pm
is enormous (contrary to previous results on the large scale
dynamo [35]), and can be well understood at low Rm us-
ing the linear properties of inhomogenous shearing waves
[17, 34]. Also shown is the mean azimuthal field By (x) (z) ≡
(LxLy)−1

´
dxdy By (x) in driven nonlinear simulations (using

statistically equivalent noise to that in CE2), which shows the
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FIG. 3. Angular momentum transport
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(including

mean and fluctuating variables) as a function of time for Rm =

12000, Pm = 1→ 16.

same trends although amplitudes are somewhat smaller. These
simulations are run at a resolution 64×128×64 (Rm ≤ 9000)
and 128 × 256 × 128 (Rm = 12000) using the SNOOPY code
[36], and mean values are obtained through time averages
from t = 200 → 400. The large error-bars on these results
illustrate how statistical simulation can be very profitable for
observing such trends in data. Note that in contrast to most
nonlinear simulation, the driving noise extends to the smallest
scales available. Future work will explore how the turbulent
dynamo changes as this is altered in both CE2 and nonlinear
simulation [37]. Interestingly, there is a marked decrease in
the saturated amplitudes at all Pm as Rm is increased. We
have been unable to find a convincing physical mechanism to
explain this effect, but note that it depends critically on the
interaction of the fluctuating fields with B̄x. This illustrates
that some important physical effects may be absent from the
saturation mechanism proposed in Refs. [17, 34].

In Fig. 3 we present the angular momentum transport as
a function of time for the highest Rm calculations presented
in Fig. 2. The increase in transport with Pm despite the in-
creased dissipation is evident, suggesting a relationship be-
tween shearing box convergence problems [9, 10] and the
large scale dynamo. While the scaling is not so pronounced as
self-sustained non-linear turbulence (see e.g., Ref. [9] figure
7), this is to be expected since the CE2 calculations are driven.
The scaling in our driven nonlinear simulations (see Fig. 2, not
shown in Fig. 3) is similar, although the overall transport level
is a factor of ∼1.5 smaller. Note that the increase in transport
is not primarily from the mean fields directly (e.g., through〈
B̄xB̄y

〉
), but rather due to the fluctuations becoming more in-

tense as a consequence of the stronger mean fields.
Discussion Our primary motivation for this work has

been to disentangle the important processes involved in MRI
turbulence and dynamo. With this aim, we have enormously
reduced the nonlinearity of the unstratified shearing box sys-
tem, keeping only those interactions that involve the kx = ky =

0 modes (the mean fields). This removes the usual turbulent
cascade, although fluctuations are still swept to the smallest
scales by the mean shear. Our primary result is that despite

this huge simplification – the only nonlinearity is due to the
mean field dynamo – the CE2 system displays qualitatively
similar trends to fully developed MRI turbulence. In partic-
ular, a decrease in Re at fixed Rm (i.e., an increase in Pm),
causes an increase in angular momentum transport. This work
illustrates the relationship of this trend to the large scale dy-
namo and facilitates future analytic studies to understand the
primary causes for such behavior. The hope is that such under-
standing would allow extrapolation into the high and low Pm
regimes that are so computationally challenging. In addition,
statistical simulation (i.e., CE2) [20, 21] provides very clear
information on the bifurcations between turbulent states of the
system. We see two important bifurcations as Rm is increased:
the first is the transition from stable homogenous turbulence
to a stable inhomogenous equilibrium with strong mean-fields
(the dynamo instability), the second a loss of stability of the
inhomogenous equilibrium and transition to a near-periodic
time-dependent state. Given the strong dependence of both
the saturated states and the second bifurcation on Pm, as well
as the marked similarity to studies of plane Couette flow [22],
it seems likely that further study of this dynamo instability
will yield important insights into the fundamental nature of
the MRI system.

We extend thanks to Jim Stone, Jiming Shi and John
Krommes for enlightening discussion. This work was sup-
ported by Max Planck/Princeton Center for Plasma Physics
and U.S. DOE (DE-AC02-09CH11466).
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