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A method based on laser wakefield acceleration with controlled ionization injection triggered by another

frequency-tripled laser is proposed, which can produce electron bunches with low energy spread. As two color

pulses co-propagate in the background plasma, the peak amplitude of the combined laser field is modulated

in time and space during the laser propagation due to the plasma dispersion. Ionization injection occurs when

the peak amplitude exceeds certain threshold. The threshold is exceeded for limited duration periodically at

different propagation distances, leading to multiple ionization injections and separated electron bunches. The

method is demonstrated through multi-dimensional particle-in-cell simulations. Such electron bunches may be

used to generate multi-chromatic X-ray sources for a variety of applications.

PACS numbers: 25.20.Dc, 29.25.Bx, 42.55.Vc, 41.75.Jv, 82.53.-k

Versatile X-ray sources with tunable brightness, spectrum

range, pulse duration, and temporal-spatial coherence could

be tools for scientific discoveries as well as medical and in-

dustrial applications. Continuous efforts are being made to

push X-ray sources towards new limits such as coherent X-

rays over 10keV [1, 2], attosecond pulses [3], two-color hard

X-ray lasers [4], etc. However, currently most of these sources

are based on conventional accelerators. More compact and

low cost X-ray devices with comparable quality are highly

desired. Recently, laser wakefield acceleration (LWFA) offers

the possibility for a new generation of compact particle accel-

erators [5]. Single or multiple bunches can be generated for

different applications [6–8]. LWFA based compact and low

cost X and γ-ray sources also have attracted much interest [9–

12].

In spite of the significant progress made in LWFA research

in the past decade [13–18], it is widely recognized that the

beam quality and stability still need to be improved consid-

erably before its wide applications. The injection process

is a key issue of high quality beam production. There are

a few interesting schemes proposed. A cold optical injec-

tion scheme is proposed to produce ultra-low energy spread

beams as shown by two-dimensional (2D) simulations [19].

Besides, ionization-induced injection in mixed gaseous tar-

gets has been proposed and demonstrated as an attractive

scheme [20–30] due to the relatively easier operation. In

this scheme a mixture of gases is chosen. In the mixture,

at least one of the gas elements has a relatively low ioniza-

tion threshold such that it is effectively pre-ionized and acts

as background plasmas, while at least another has inner shells

with higher ionization thresholds (such as nitrogen and oxy-

gen). The laser releases these inner shell electrons at a loca-

tion within the wake such that they can be easily trapped and

accelerated. Generally, the final electron beam energy spread

is related to the effective injection length [31–33], which of-

ten leads to energy spread much larger than 1%, unless some
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FIG. 1. (Color online) Schematic view of dual color lasers trigged

periodic injection in LWFA. A laser with base frequency ω1 (the red

curves) and its harmonic ω2 (the blue curves) propagate in a mixed

gas plasma. The dashed black curves show the superposition of the

two frequency laser fields at different propagation distances. Laser

parameters are chosen so that ionization-induced injection can be

switched on when the beating is constructive and be switched off

when the beating is destructive. In the plot, Eith represents the effec-

tive threshold field for the high-Z gas inner shell ionization.

techniques such as the laser self-focusing is used [34].

In this letter, we propose a new electron injection scheme

to produce ultralow energy spread and single or multi elec-

tron bunches with equally spaced energy peaks. We use a

bichromatic laser to trigger sequential ionization injections.

In our one-dimensional (1D) and multi dimensional particle-

in-cell (PIC) simulations using the code OSIRIS [35], low

energy spread beams are generated because the effective in-

jection length is suppressed to a few hundred micrometers.

Multi-peak energy spectrum can also be observed if a specific

condition is satisfied.

This scenario is illustrated in Fig. 1. A main pulse with

the fundamental frequency is responsible for driving an ac-

celerating wakefield in the blowout regime [36–38]. A second

co-propagating harmonic pulse with a smaller amplitude mod-

ulates the peak laser field strength and acts as a trigger of the

high-Z gas K-shell ionization. Due to the laser dispersion in
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the plasma, the phase speed of the two frequency components

are different. By tuning the amplitude of the two components,

one can limit the K-shell ionization only occurring when the

peaks of the two lasers overlap.

To understand this process, we first study the propagation

of a bichromatic laser in plasmas. Consider two plane waves

(i = 1, 2) with the normalized vector potentials

ai(z, t) = ai0 sin(ωit − kiz + φi), (1)

where ai0 are the amplitudes normalized to mec
2/e, ωi are

the frequencies, ki are the wave numbers, φi are the initial

phases of the two pulses, respectively. In the linear regime,

their frequencies and wave numbers satisfy the linear disper-

sion relation ω2
i
= ω2

p + c2k2
i
, and for low density plasmas

the phase velocity can be expanded as ωi

ki
= c(1 − 1

2
(
ωp

ωi
)2)−1,

where
ωp

ωi
≪ 1. Substituting these expressions into Eq. (1),

rewriting the variables using speed of light frame variables

ξ = ω1(t − z
c
) and s =

ω1

c
z, and normalizing the frequency

to ω1, time to ω−1
1

, length to c/ω1, the laser vector poten-

tial can be rewritten as a1(ξ, s) = a10 sin(ξ + 1
2
ω2

ps + φ1) and

a2(ξ, s) = a20 sin(ω2ξ+
1
2

ω2
p

ω2
s+φ2). Correspondingly, the elec-

tric fields are normalized to meω1c/e and can be written as

E1(ξ, s) = a10 cos(ξ +
1

2
ω2

ps + φ1),

E2(ξ, s) = a20ω2 cos(ω2ξ +
1

2

ω2
p

ω2

s + φ2). (2)

The total electric field is given by E(ξ, s) = E1(ξ, s)+E2(ξ, s).

We choose ω2 = 2, ωp = 0.01 and a20/a10 = 1/4 as an ex-

ample, and the plot is shown in Fig. 2 (a). One can find out

that changing φ1 and φ2 only leads to shifting the pattern in

Fig. 2 (a) up and down (or left and right). The period of s over

which the beat pattern changes is given by

∆s =
4π

ω2
p(ω2 − 1

ω2
)
. (3)

We only consider the situation that a20 < a10 and ω2 to

be an integer larger than 1, and optimize the combination of

a20/a10 and ω2. Assume the peak field strength of E(ξ, s) for

a given s is Epeak(s). Its maximum value is found at s = s1 as

Epeak|max = Epeak(s1) and its minimum value is found at s =

s2 as Epeak|min = Epeak(s2). Optimization for the controlled

ionization injection can be realized by tuning the ratio

R (a20/a10, ω2) ≡ Epeak|max/Epeak|min. (4)

It is easy to see that Epeak|max = a10 + a20ω2, but it is

not straight forward to obtain Epeak|min analytically. From

Eq. (2) one knows that the dispersion in plasma does not

change 〈E2(ξ, s)〉 (the power averaged over time ξ), though

it changes the peak value of the bichromatic laser field. Con-

sider a square wave at a particular value of s, which has the

lowest peak amplitude for a given average power. As the laser

evolves the average power remains a constant, but the super-

position of the laser components will become narrower peaks
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FIG. 2. (Color online) Typical evolution of the dual color lasers

according to Eq. (2). (a) a10 = 1, a20 = 1/4, ω2/ω1 = 2 and

ωp/ω1 = 0.01. (b) a10 = 1, a20 = 1/9, ω2/ω1 = 3 and ωp/ω1 = 0.01.

(c) Illustration showing the reason to use a SWBL combination. (d)

Two line-outs of (b) at s values indicated by the black and red lines.

as shown in Fig. 2 (c). A good approximation of a square

wave is the first two components of its Fourier series, i. e.,

ω2/ω1 = 3 and a20/a10 = 1/9 as shown in Fig. 2 (d). As one

can see using only two frequencies approximates Fig. 2 (c)

reasonably well. One can verify that the 1 : 3 combination is

optimal by trying other combinations and compare the ratios

defined by Eq. (4). We call this combination, the square-wave

like bichromatic lasers (SWBL).

Based on the peculiar peak amplitude evolution of the

SWBL, the ionization injection region can be broken into

small pieces. By choosing the amplitude of the SWBL so that

Epeak|min < EN5+ < Epeak|max, (5)

the ionization injections can be limited to a few small sep-

arated regions, where EN5+ is the effective ionization thresh-

old of N5+. One may find Epeak|max =
4
3
a10mecω1e−1 and

Epeak|min =
2
√

2
3

a10mecω1e−1.

In Fig. 3 we show the 1D PIC simulations results of such

multiple ionization injection and acceleration process. ω1 is

chosen to be the frequency of the 800 nm laser and a10 = 1.6.

The laser pulse duration is 33 fs in FWHM with the sin2 pro-

file. The background plasma is provided by helium with the

plasma density of np = 1.6 × 10−3nc, where nc is the critical

density of the 800 nm laser. The injection provider is nitro-

gen with the density of nN = 1.6 × 10−7nc. The sequential

ionization injections can be found in Fig. 3 (a). The curves in

Fig. 3 (b) shows the evolution of the laser peak amplitude pre-

dicted by the theory and the result from the simulation. The

differences of the theory and the simulation after some prop-

agation distance are due to the plasma response and the non-

linear laser frequency shifting [39]. To control the injection

bunch numbers we set the mixed gas length within an appro-

priate length of 1 mm. Such kind of gas jets have already been
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FIG. 3. (Color online) 1D PIC simulation of the SWBL and injec-

tions. (a) Electron energy at the diagnostic point vs. the initial po-

sition of the injected electrons. (b) The SWBL peak amplitude evo-

lution. The blue dotted line is the estimated inner shell ionization

threshold, and the black dash-dotted line is the separation from the

mixed gas to the pure helium gas. (c) Electron beam spectrum at

the distance 4860 µm, where the minimum energy spread during the

phase rotation is measured to be 0.29% in FWHM. (d) The energy

and energy spread in FWHM vs. the initial laser phase φ.

used in several laboratories [32].

Totally three discrete bunches are observed in this simula-

tion and the energy spectrum at an acceleration distance of

4854.4 µm is shown in Fig. 3 (c) with the three peaks labeled,

corresponding to the three injections shown in Fig. 3 (a) and

Fig. 3 (b) within the mixed gas region. Each injection dura-

tion is limited to 100 ∼ 200 µm. In this specific simulation,

the second bunch has its minimal energy spread of 0.29% at

distance of 4860 µm, while the other two bunches can also get

their minimum energy spreads at other appropriate accelera-

tion distances. It is worth noting that even though the optimal

acceleration distances for the minimal energy spreads are dif-

ferent for different bunches, this proposed scheme is robust

because the accelerated beams can keep a low energy spread

in a sufficient wide range of acceleration distances, which is

clearer in multi-dimensional cases.

For such two color beat wave ionization injection scheme,

the initial phases of the two pulses may affect the specific

ionization injection position. Without loss of generality, let

φ1 = φ2 ≡ φ, and change φ from 0◦ to 135◦, which corre-

spondingly changes the positions of the electric field reaching

Epeak|max. The output beam energies and energy spreads at ac-

celeration distance of 4800 µm are shown in Fig. 3 (d). One

can see that the central energy of a specific electron bunch at

a fixed laser propagation distance has a fluctuation of 30MeV,

which is close to the energy difference between the first and

second bunch shown in Fig. 3 (c). This energy fluctuation

comes from the different injection positions set by the two

laser phases. Nevertheless, we find all these simulations show
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FIG. 4. (Color online) 2D PIC simulations of the SWBL injection

scheme. (a) The density snapshot at z = 3780 µm. The colored

dots show the locations of three electron bunches. (b) The energy

and space distribution of the energetic electrons. (c) The spectrum of

the injected electrons, showing three monoenergetic peaks. (d) The

pseudo-potential (ψ) difference of the wake and the laser peak field

evolution. The dash-dotted line is the separation from the mixed gas

region to the pure helium region.

quite good beam quality. They keep small energy spreads of

less than 1% regardless of the initial phase change.

Beside the phase effects, other high dimensional effects

such as the self-focusing, the evolution of the bubble radius,

and off axis ionizations, may also affect the injection and ac-

celeration. Among them, self-focusing and the associated

evolution of the bubble radius are most important. One of

the solutions is to choose a matched spot size [38]. An-

other solution is to choose a relative large spot size so that

self-focusing occurs after a sufficient long acceleration dis-

tance, during which multiple injections have already estab-

lished. Generally, self-focusing occurs in a distance estimated

by zsf = ZR( α
32

a2
10

k2
pW2

0
− 1)−1/2, where α =

√
2 for a 2D

slab geometry and α = 1 for a 2D cylindrical or 3D ge-

ometry [34, 40]. With the presence of self-focusing, a two-

stage acceleration process should be deployed [31, 32]. For

the multiple-injection to occur, it is required that the injection

stage length satisfies

Linj < zsf . (6)

In this case, the number of ionization injected bunches can be

estimated as

Nbunch =

[

Linj/(
c∆s

ω1

)

]

, (7)

where the square brackets pair means the downward round-

ing. The energy difference between the monoenergetic peaks

can be estimated by the injection position difference times the

averaged acceleration gradient

∆Energy =
c∆s

ω1

× 1

2
G0, (8)
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where G0[eV/m] ≈ 96

√

np[cm−3].

A typical 2D simulation is shown in Fig. 4, where we

choose a10 = 1.46, a20 = 0.162, W0 = 80 µm and other pa-

rameters are the same as those in the 1D simulations. The

initial laser amplitude in the 2D simulation is lower than that

in 1D. But when the SWBL field reaches its first maximum in

2D, the peak field strength is very close to that in the 1D cases

due to the self-focusing effect. The injection stage length is

Linj = 1 mm so that Eq. (6) is satisfied. A typical distribu-

tion of the injected bunches is shown in Fig. 4 (a). The cen-

tral positions of these bunches are spatially separated at this

snapshot with µm scale separations. Figure 4 (b) shows the

phase space distribution of the bunches, from which we see

within the second and the third bunches, there are a few micro

bunches. These micro bunches come from the several over-

lapping peaks of the combined electric fields larger than the

ionization threshold as schematically shown in Fig. 1. These

bunches degrade the monochromaticity of the final beams,

showing the pedestals between the peaks of the energy spec-

trum in Fig. 4 (c). In addition, the whole spectrum is com-

posed of three main peaks with the separation of 30 MeV con-

firming the prediction of Eqs. (7) and (8). From our simula-

tions we find these pedestals can be reduced by using a shorter

3ω laser, which makes the inner shell ionization only occurs

in a single overlapping electric field peak. A simulation with

10 fs 3ω laser gives a single injected electron bunch with final

energy spread less than 0.2% in FWHM.

The injection positions of the electrons can be estimated

by evaluating both the ionization threshold and the pseudo-

potential (ψ) differences [23] related to the wake and the ion-

ized electrons. The threshold for ionization injection is given

by ∆ψth = 1 −
√

1+(p⊥/mec)2

γph
≈ 0.9, where the normalized

transverse momentum is estimated to be the normalized laser

vector potential at ionization p⊥/mec ≈ 1.9, and the wake

phase velocity Lorentz factor is estimated by the linear theory

γph ≈ ω/ωp = 25. In Fig. 4 (d), the blue dashed line shows

this threshold, and the black line shows the drop of ψ from the

nitrogen K-shell ionization position to the minimum ψ, which

is manually set to zero when the laser amplitude is lower than

the K-shell ionization threshold. There are three periods in the

injector region (distance up to 1000 µm) that satisfy the injec-

tion condition, consist with the three period when laser peak

field exceeds the effective ionization threshold of the nitrogen

inner shell, and also consist with the three injected bunches.

In the simulation, we found that within a larger distance (be-

tween 3.5 mm and 4.5 mm), all of the bunches keep very low

energy spread (less than 0.4% in FWHM). This gives a very

larger acceleration distance window to get a high quality beam

in experiments.

A series of 3D simulations are also performed. A typical

result is shown in Fig. 5, in which we choose np = 8× 10−4nc,

a10 = 1.485, W0 = 40 µm and Linj = 1 mm so that Nbunch = 1

according to Eq. (7). A beam with a total charge of 12.6 pC,

a mean energy of 389MeV and a true RMS energy spread

of 1.53% is produced, which confirms the effectiveness of
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FIG. 5. (Color online) A 3D PIC simulation of the SWBL injections.

(a) A 3D wake plot. Only a half of the bubble is plotted to show the

inner structure of the bubble and the injected electrons. The electron

beam has normalized emittances of 3.3 µm · rad in the laser polar-

ization direction, and 2.3 µm · rad in the perpendicular direction. (b)

Phase space of the injected charge. The white curve is the projection

to the pz axis.

SWBL injection scheme. From other 3D simulations we no-

tice that as np decreases (laser power should be no less than the

critical power for self-guiding while keeping a0 unchanged,

thus W0 may be increased accordingly), the laser can be self-

guided longer, the final electron beam energy increases, and

the relative energy spread decreases. Although we have not

yet tested the GeV level acceleration due to the limited com-

putational resources available, from the serial 3D runs with

absolute energy spread ∼ 5 MeV it is very promising that

our injection scheme can produce electron beams with energy

spread lower than 1% once the plasma density and laser power

are suitable for GeV level accelerations.

In conclusion, we have proposed a dual color laser scheme

to control ionization injection in LWFAs. It can result in pe-

riodic triggering of the ionization injection and consequently

produce a unique comb-like energy spectrum. These features

are demonstrated by multi-dimensional PIC simulations. The

energy spread of an individual electron bunch produced from

a single injection period can be controlled down to around

1% or even less with the central energy of a few hundred

MeV. Our scheme to generate multi-chromatic narrow energy-

spread electron bunches can be used for multi color X-ray

generation [4, 41], which is particularly interesting for medi-

cal imaging applications [42, 43]. The multi-chromatic beams

may also be interesting for radiotherapy [44].
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