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We observe the emergence of a disorder-induced insulating state in a strongly interacting atomic
Fermi gas trapped in an optical lattice. This closed quantum system free of a thermal reservoir
realizes the disordered Fermi-Hubbard model, which is a minimal model for strongly correlated
electronic solids. We observe disorder-induced localization of a metallic state through measurements
of mass transport. By varying the lattice potential depth, we detect interaction-driven delocalization
of the disordered insulating state. We also measure localization that persists as the temperature
of the gas is raised. These behaviors are consistent with many-body localization, which is a novel
paradigm for understanding localization in interacting quantum systems at non-zero temperature.
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The impact of inter-particle interactions on localiza-
tion of disordered quantum systems has been the sub-
ject of intense scrutiny for decades (see [1–5] and refer-
ences therein). Obtaining new insights into the inter-
play of interactions and disorder is critical to improving
our understanding of quantum electronic solids such as
the high-temperature superconducting cuprates and ma-
terials that exhibit colossal magnetoresistance, such as
the manganites [4, 6, 7]. Despite the application of a
wide variety of sophisticated theoretical and numerical
approaches, consensus regarding the nature of metal–
insulator transitions and localization in strongly corre-
lated systems has not been achieved. A recent theoret-
ical approach to these questions is many-body localiza-
tion (MBL) [8–11], which overturns the conventional view
holding that materials above zero temperature have non-
zero conductivity in the presence of interactions. In a
many-body localized state, a quantum system can re-
main an Anderson-localized insulator at non-zero tem-
perature because the inter-particle interactions fail to
generate thermally activated conductivity.

We investigate localization using an ultracold atomic
gas trapped in a disordered optical lattice. This precisely
controllable system, which realizes the disordered Fermi-
Hubbard model (DFHM) [12]—the minimal model for
strongly correlated, disordered electronic solids—is free
of a heat bath, such as phonons, that can lead to finite
conductivity at nonzero temperature and foils direct tests
of theories such as MBL in the solid state. The seminal
theoretical work by Basko et al. on MBL [8] explored
the weakly interacting regime of a spinless DFHM; we
investigate the strongly correlated limit which is chal-
lenging for theory and numerical approaches. We probe
disorder-induced metal–insulator transitions using mass
transport measurements. The disorder ∆c required to
localize the gas and produce an insulating state is deter-
mined for different ratios of the Hubbard interaction to
tunneling energies. We find that increased interactions
stabilize the metal against localization and lead to an
insulator–metal transition. We also show that localiza-

tion occurs across a range of thermal energy densities at
fixed disorder strength by varying the temperature of the
gas.

In our experiment, fermionic 40K atoms cooled below
the Fermi temperature TF and trapped in a cubic opti-
cal lattice potential formed from three pairs of counter-
propagating laser beams play the role of the electrons
in a solid [13]. The atoms are confined by a crossed-
beam dipole trap that forms a parabolic potential as
shown in Fig. 1. An approximately equal mixture of two
atomic hyperfine states (↓=|F = 9/2,mF = 9/2〉 and
↑= |F = 9/2,mF = 7/2〉) are used to mimic the spin of
the electron.

FIG. 1. Schematic representation of experimental geometry
and disordered lattice. The atoms are cooled in a magnetic
trap (copper) and an optical dipole trap formed from 1064 nm
laser beams (gray lines). Optical lattice laser beams (red) su-
perimposed on the trap form a cubic lattice potential. A
532 nm optical speckle field (green) is focused onto the atoms
using a 1.1 f -number lens (gray hemisphere). Atoms in two
hyperfine states (red and blue spheres) are trapped in the dis-
ordered lattice potential (false color) formed at the intersec-
tion of all the laser beams. A two-dimensional representation
of the lattice is shown for clarity. The imaging direction is
along the [111] direction of the lattice and is indicated by a
dashed line.

In the lattice, the atoms tunnel between adjacent sites
and two atoms on the same site (in different hyper-



2

fine states) interact through a low-energy s-wave colli-
sion, thereby realizing the Fermi-Hubbard model (FHM)
[13, 14]. Previous work with ultracold atoms has ex-
plored the Mott insulator (MI) phase [15, 16] and trans-
port properties [17, 18] for the FHM. The equivalent of
material parameters, such as the ratio U/t of Hubbard
interaction to tunneling energy, are precisely known and
tunable over orders of magnitude by adjusting the power
of the λ = 782.2 nm lattice laser, which controls the lat-
tice potential depth s. We access the metallic phase in
the lattice by employing a range of s such that U < 12t
and by adjusting the number of atoms N and the geomet-
ric mean of the harmonic trap frequency ω so that the

characteristic density ρ̃ = N
(
mω2d2/12t

)3/2
< 5 [19].

The trap leads to a spatially inhomogeneous density pro-
file, with approximately 0.3–0.7 particles per site in the
center of the clean lattice for each spin state [20].

By disordering the lattice potential using optical speck-
le [21, 22], we explore the DFHM with ultracold atoms
for the first time. The optical speckle field is produced
by passing a 532 nm laser beam through a holographic
diffuser and focusing it onto the atoms, as in Refs. 21, 22,
and 23. The atoms experience a potential proportional
to the optical speckle intensity, which varies randomly
in space. The strength of this disorder is characterized
by the average disorder potential energy ∆ and can be
adjusted by varying the 532 nm laser power. In con-
trast with experiments on solids, the disorder is precisely
known (via optical microscopy) and continuously tun-
able, from complete absence to the largest energy scale
present.

The disorder causes the “clean” Hubbard model oc-
cupation ε, interaction U , and tunneling t energies to
vary from site to site in the lattice. The atoms there-
fore realize a single-band DFHM described by the Hamil-

tonian H =
∑
i Uin̂i↑n̂i↓ −

∑
〈ij〉,σ tij

(
ĉ†jσ ĉiσ + h.c.

)
+∑

i,σ

(
εi +mω2r2

i /2
)
n̂i,σ, where i indexes the lattice

sites, ĉ†iσ is the operator that creates an atom on site
i in spin state σ =↑, ↓, 〈ij〉 indicates a sum over adja-
cent sites, m is the atomic mass, ri is the distance from
the trap center to site i, and n̂i,σ = ĉ†iσ ĉiσ is the number
operator. We work at sufficiently low temperature such
that the atoms occupy only the lowest energy band. The
statistical distributions of Hubbard parameters are given
in Refs. 21 and 24; the standard deviation of the εi distri-
bution is approximately equal to ∆. Because the speckle
beam does not propagate along a lattice direction, the
Hubbard parameters are fully disordered in three dimen-
sions 24. We cite the Hubbard energies and ∆ in units
of the atomic recoil energy ER = h2/8md2 ≈ kB ·390nK,
where d = λ/2 is the lattice spacing, and h and kB are
Planck’s and Boltzmann’s constants.

To study the influence of interactions and disorder on
transport, we measure the response of the atomic quasi-
momentum distribution n(q) to an applied impulse. We

developed this method to measure disorder-induced lo-
calization for the Bose-Hubbard model in previous ex-
periments [22] and achieved quantitative agreement with
quantum Monte-Carlo simulations [25]. An external force
is applied to the gas by turning on a magnetic field gradi-
ent for 2 ms, which is short compared with the confining
trap period [20]. Immediately following the impulse, the
lattice is turned off in 200 µs, and we measure n(q) by
bandmapping and absorption imaging after 10 ms time-
of-flight [26]. The center-of-mass (COM) velocity vCOM
of n(q) is determined by measuring the displacement of
the centroid of the imaged density profile from the case
without an impulse.

In the metallic phase, applying an external force in-
duces a COM velocity, which is manifest as an asymme-
try in n(q) and vCOM 6= 0 (Fig. 2(a),i). We observe that
the introduction of disorder obstructs transport, lead-
ing to a localized insulating phase (Fig. 2(a),ii). Low-
temperature (i.e., 0.16± 0.01 TF in the trap) data taken
for a range s = 4–7 ER (corresponding to U/12t ≈ 0.20–
0.75) and ∆ ≈0–1.5 ER are shown in Fig. 2(a). At all
lattice potential depths, increasing ∆ causes vCOM to
decrease.

Sufficient ∆ to completely arrest motion, signifying a
metal–insulator transition, is achieved for all s. Localiza-
tion in three dimensions has been previously observed for
non-lattice gases using weakly [27] and non-interacting
[23] atoms. The metal smoothly transforms to the in-
sulating state because the entire continuous energy spec-
trum of non-localized, single-particle states in the gas can
contribute to vCOM . As revealed in the images and pro-
files shown in Figs. 2(b) and 2(c), disorder has a minor
impact on n(q). The localized insulating state we observe
emerge is therefore qualitatively distinct from a band or
Mott insulator—the quasimomentum distribution is nar-
row and states at the band edge are unfilled. A band
or Mott insulator, induced by increasing N and/or s in
the absence of disorder, would display a broader distri-
bution, since n(q) is uniform across the Brillouin zone for
those states. Based on the rms size of the image shown
in Fig. 2(b) and assuming an exponential density distri-
bution for localized states, we estimate a lower limit of
2.5 sites for the average localization length.

To quantitatively identify the transition to a localized
state, we measure the characteristic disorder ∆c required
to completely arrest motion. In a single-band system, all
energy scales are bounded and a finite disorder strength
localizes all (single-particle) states. The ∆c we measure
corresponds to the average disorder potential energy re-
quired for the mobility edge trajectory to traverse the
band and localize all states in the non-interacting limit.
In the Anderson model, ∆c is a fixed fraction of the to-
tal bandwidth, and is 6t (16t) for Gaussian (uniformly)
distributed site energies [28]. A calculation of the mobil-
ity edge trajectory for the lattice we employ, which has
a distribution of site energies sharing properties of both
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FIG. 2. (a) The COM velocity of the atom gas measured after
an applied impulse for s = 4 (blue squares), 5 (red circles),
6 (green triangles), and 7 ER (orange diamonds). Sample
images used to determine vCOM are shown in false color for
s = 4 ER for ∆ = 0 ER (i) and ∆ = 1.46 ER (ii). The field-of-
view for all absorption images used in this work is 0.54 mm.
The projection of the Brillouin zone onto the imaging plane,
which is a hexagon because of the imaging and lattice-beam
geometry, is indicated using solid black lines. The blue dotted
line is the exponential fit used to determine ∆c for s = 4 ER;
the arrow indicates ∆c for s = 4 ER. The error bars are
the standard error in the mean for the 7–9 experimental runs
that are averaged for each data point. (b) Images taken at
s = 4 ER, ∆ = 0 ER (iii) and ∆ = 1.46 ER (iv) without an
impulse. The quasimomentum q̃ projected along the vertical
axis in the imaging plane is measured in units of the maximum
allowed quasimomentum in the Brilloun zone qmax. (c) Traces
through images (iii) (solid blue line) and (iv) (blue shaded
region) showing the measured optical depth (OD).

the Gaussian and uniform cases, is unavailable.
We measure ∆c as the disorder potential energy nec-

essary to eliminate vCOM within the experimental reso-
lution vres = 0.05 mm/s. The grey band in Fig. 2(a)
shows vres, which is the standard error of the mean in
vCOM when an impulse is not applied. ∆c is deter-
mined from a heuristic fit used to smooth the data at
fixed s to vCOM = Ae−∆/∆clog(A/vres) with A and ∆c

as free parameters. The resolution vres corresponds to
a 10 pK thermal velocity, which is three orders of mag-
nitude smaller than all other energy scales—the Fermi
temperature is approximately 200 nK, the temperature
of the gas is roughly 30 nK, and ∆c/kB ∼ 200–300 nK.

Our determination of ∆c is thus an excellent approxima-
tion to the disorder required to localize the band.

By comparing ∆c measured at different s and in-
teraction strengths, we observe an interaction-driven
insulator–metal (i.e., delocalization) transition. Fig. 3
shows ∆c normalized by 12t for the U/12t corresponding
to each lattice potential depth sampled in Fig. 2. The
characteristic disorder and Hubbard energies are normal-
ized to 12t, which is the maximum kinetic energy for sin-
gle particles. We observe that as U/12t increases, ∆c/12t
increases, and thus a localized insulating phase can be
transformed to a metallic state by stronger interactions.
For a non-interacting system, ∆c/12t would remain fixed
as s was varied because the bandwidth 12t (controlled
solely by s) determines all energy scales [28]. The slope
of a linear fit to the data is positive at greater than the
six-standard-deviation (in the fit uncertainty) level. A
Monte Carlo uncertainty analysis with different underly-
ing assumptions indicates that the slope the data shown
in Fig. 3 is positive at greater than a 99.8% confidence
level [20].

To exclude the observed metal–insulator transition as
a percolation transition, in which particles are classically
confined to finite spatial region of energetically accessible
sites, we determine the percolation threshold [25], which
is shown in Fig. 3 as a dashed line and exceeds the mea-
sured ∆c/12t by an order of magnitude at high U/12t.
The ∆c/12t we measure is approximately a factor of 3–
4 smaller compared with a statistical dynamical mean-
field theory (SDMFT) prediction for a metal-insulator
transition [29]. This discrepancy may be explained by
the Bethe lattice geometry and mean-field approxima-
tion employed in Ref. 29 and the presence of the trap in
the experiment.

To explore the temperature dependence of localization,
we vary the temperature of the gas before turning on the
disordered lattice with s = 4 ER and fixed ∆. In Fig. 4,
we show measurements of vCOM for temperatures rang-
ing from 40 to 150 nK (corresponding to an entropy of
kB × (1.9–3.3) per particle) in the harmonic trap. In
order to account for the compression of this tempera-
ture range in the lattice because of the maximum kinetic
energy attached to the finite bandwidth, we treat the
disorder as an overall chemical potential shift and esti-
mate the corresponding temperature in the lattice Tlat
using a self-consistent Hartree-Fock calculation to match
entropy [20]. We fix ∆ = 1 ER, which is the character-
istic disorder ∆c for localization at the lowest tempera-
ture, in order to maximize the sensitivity to temperature.
For reference, we also show data with motion present for
∆ = 0.4 ER.

In both cases, the motion of the gas is insensitive to
temperature. To quantitatively characterize the temper-
ature dependence in the marginally localized case, we fit
the data at ∆ = 1 ER to a line. The 95% confidence in-
terval for this fit overlaps with vres over the full range of
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FIG. 3. Interaction induced delocalization. The character-
istic disorder strength ∆c/12t is shown for varying interac-
tion strength U/12t, which is controlled by tuning the lattice
potential depth s. The blue arrow indicates an interaction-
driven insulator–metal transition. ∆c varies by less than 20%
across this range, while t changes by a factor of 2.2. The er-
ror bars show the uncertainty in the fit to the data in Fig. 2
used to determine ∆c. The percolation threshold is shown as
a dashed line, and a linear fit to the data as a red solid line.

temperatures we sample, implying that the gas remains
localized as the temperature is raised. For these data,
vres is at least three orders of magnitude smaller than
the temperature and chemical potential of the gas. Fur-
thermore, the chemical potential and temperature at the
highest Tlat are approximately 2.7t and 2t, leading to
minimal occupation at the Brilloun-zone boundary and
less than 2% of the atoms occupying single-particle local-
ized states that would not respond to the impulse [20, 26].
In this regime, the gas is metallic in the absence of dis-
order. The data shown in Fig. 4 are thus an significant
constraint that imply many-particle excited states are lo-
calized by disorder.

This behavior is consistent with MBL, which predicts
that the many-particle eigenstates are localized by disor-
der across a range of energies in the weakly interacting
limit of the Hubbard model. MBL also predicts that the
conductivity, which is analogous to vCOM in our system,
vanishes across a span of temperature [8, 9]. Our mea-
surement is consistent with this absence of thermally ac-
tivated conductivity—the slope of the linear fit in Fig. 4
is inconsistent with a rise in vCOM at the 95% confidence
level. Given the lack of a quantitative prediction in the
strongly correlated regime, we cannot rule out non-zero
thermal conductivity at a level several times smaller than
vres.

Future studies in this system may focus on measuring
other MBL predictions such as area-laws for entangle-

FIG. 4. Temperature dependence of localization explored
through measurements of vCOM . Data are shown for the
marginally localized case at the lowest temperature with ∆
fixed to ∆c = 1 ER at s = 4 ER (closed circles) and
for ∆ = 0.4 ER (open circles). Representative images are
shown in false color for gases without an applied impulse for
Tlat ≈ 30 nK (i) and Tlat ≈ 70 nK (ii) for ∆ = 1 ER. Slices
are shown through these images using the scheme from Fig.
2b for ∆ = 1 ER (black line) and ∆ = 0.4 ER (red line) in
(iii). The gray band corresponds to our resolution limit vres
for center-of-mass motion, and the red band is the 95% confi-
dence interval for a linear fit (red line) to the ∆ = 1 ER data.
The error bars represent the standard error for the 12–48 ex-
perimental runs that were averaged for each data point.

ment entropy [11] and the possibility that a many-body
localized state may fail to thermalize, a situation that
has profound consequences for the eigenstate thermaliza-
tion hypothesis [30, 31]. Transport phenomena in the MI
phase present at higher s can also be measured. SDMFT
for this system predicts that disorder transforms the MI
phase into a disordered correlated metal [29]. Probing
such changes in transport properties using the impulse
method is complicated in the MI regime by the coexisting
metallic shell and localized single-particle states [26] that
are occupied when kBTF > 12t. Alternatively, methods
that use a chemical potential imbalance imposed across a
channel may be employed in the future to explore trans-
port in the MI regime [32] and to probe if disorder leads
to non-Fermi-liquid behavior in the metallic regime [4].
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