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We compute the length- and timescales associated with resonant orbits around Kerr black-holes
for all orbital and spin parameters. Resonance induced effects are potentially observable when
the Event Horizon Telescope resolves the inner structure of SgrA*, when space-based gravitational
wave detectors record phaseshifts in the waveform during the resonant passage of a compact object
spiraling into the black-hole, or in the frequencies of quasi periodic oscillations for accreting black-
holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations
quantified here.
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FIG. 1. Low-order resonances superimposed on the spatial
geometry of a black-hole. The line-widths indicate the relative
importance of each resonance.

Introduction. Resonant phenomena are ubiquitous in
multi-frequency systems and are harbingers of the on-
set of dynamical chaos [1]. In celestial mechanics, they
play an important role in satellite dynamics. Gaps in the
asteroid belt and the density profile in the rings of Sat-
urn [2, 3] have in large part been sculpted by resonant in-
teractions. The orbital motion of satellites around black-
holes is mathematically idealized as bound geodesics in
the Kerr metric. Unlike in Newtonian gravity where or-
bits are characterized by a single rotational frequency
ωφ, Kerr geodesics have three frequencies [4]. The two
libration type frequencies ωr and ωθ corresponding to the
radial and longitudinal motions augment ωφ and give rise
to the resonant phenomena considered here.

When exploring dynamics in an astrophysical environ-
ment such as near SgrA* at the galactic center a num-

ber of corrections to the vacuum Kerr hamiltonian HK

must be taken into account. The presence of an accretion
disk [5], other sources of matter, structural deviations of
the central black-hole away from the Kerr metric [6–8],
the influence of modified gravity, and the satellite’s prop-
erties like mass and spin [9, 10] will all affect its orbital
motion. Regardless of the nature of the perturbation, the
Kolmogorov-Arnold-Moser (KAM) theorem states that
the perturbed dynamics will be a smooth distortion of
Kerr geodesics provided the frequencies of the motion in
HK are sufficiently irrational as quantified by the crite-
rion [11, 12] |mωr − nωθ| > K(ǫ)/(n + m)3. The factor
K(ǫ) here approaches zero as the perturbation vanishes.
The notable exception to this theorem is low-order (small
n+m value) resonant orbits whose frequencies occur in
the rational ratios of ωr/ωθ = n/m = 1/2, 1/3, 2/3, · · · .
For these orbits the possibility of dramatic deviations
from Kerr dynamics exists. Since the predictions of the
KAM theorem depend on HK only, we expect a poten-
tially measurable imprint of Kerr’s resonant structure in
any astrophysical environment. The locations of low-
order resonances are illustrated in Fig. 1 and the asso-
ciated time and lengthscales tabulated in Table I. For
SgrA*, the low-order resonances have ∼ 1hr timescales
and occur ∼ 50µas from the black-hole.

Within the next decade radio telescopes will attain suf-
ficient angular resolution to resolve lengthscales typical
of resonant phenomena at the center of our galaxy [13].
A stellar mass compact object samples all the resonant
bands depicted in Fig. 1 as it spirals into a supermassive
black-hole. Future gravitational wave detectors may ob-
serve resonance-induced phase shifts in the emitted grav-
itational waves [14, 15]. X-ray, optical and infrared tele-
scopes do not have the resolving power to image SgrA*
directly but can potentially record flux variations from
this region that display timescales characteristic of reso-
nant events [16]. Quasi-periodic oscillations (QPOs) ob-
served in the X-ray spectra of several black-hole candi-
dates exhibit peaks at frequencies in a low integer ratio
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that could potentially be associated with the orbital reso-
nances [17, 18]. To aid the identification of astrophysical
phenomena that might originate from orbital resonances
we fully characterize the region of parameter space where
resonant effects occur. We present a number of easily
evaluated formulae demonstrating the spin and eccen-
tricity dependence of resonances and build an intuitive
understanding for the inclination dependence.
The resonance condition. Geodesic motion in the Kerr

spacetime with spin parameter a, is integrable. The en-
ergy E, azimuthal angular momentum Lz and Carter
constant Q fully specify the trajectory of a particle with
rest mass µ [19]. The trajectory can equivalently be de-
scribed using Kepler-type variables that are directly re-
lated to the orbit’s geometry [4]: its semi-latus rectum p,
eccentricity e, and the sine of the maximum orbital incli-
nation z−. For a generic bound orbit expressed in Boyer-
Lindquist coordinates (t, r, θ, φ), the radial motion oscil-
lates between the apastron, r1 = p/(1− e), and the pe-
riastron, r2 = p/(1 + e), with a frequency ωr. The longi-
tudinal motion oscillates about the equatorial plane with
a frequency ωθ, sampling the angles θ∗ ≤ θ ≤ π − θ∗; we
define z− = sin(π/2− θ∗).
Resonances occur for parameter values on a two-

dimensional surface in {p, e, z−} space determined by
the resonance condition
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where the functions R and Θ can be factored as

R = −β2(r − r1)(r − r2)(r − r3)(r − r4) (2)

Θ = a2β2(z2 − z2−)(z
2 − z2+). (3)

Here, β2 = (µ2 − E2) and the roots obey r1 ≥ r2 ≥
r3 ≥ r4 and z+ ≥ z−. Evaluating the right-hand side
of (1) and extracting the physics of the resonant sur-
faces is complicated by the fact that the roots r3, r4
and z+ are implicit functions of {p, e, z−}. By express-
ing the resonance condition (1) in its most symmetric
form using Carlson’s integrals [20] we obtain several use-
ful analytic results and construct a rapidly convergent
semi-analytical scheme for finding these surfaces in gen-
eral [21].
Features of resonance surfaces. The 2/3 resonance sur-

face in {p, e, z−} space for a maximally spinning black-
hole is illustrated in Fig. 2. For a given spin, all reso-
nance surfaces display the same qualitative eccentricity
and inclination dependence. The surface has the shape
of an inverted ′U ′ arch that depends weakly on eccen-
tricity and attains a maximum inclination of z2− = 1 at
p = ppolar. For smaller inclination, z2− < 1 and fixed ec-
centricity, the two possible values of p on the resonant
surface correspond to prograde, p+ < ppolar, and retro-
grade, p− > ppolar, resonant orbits. The p± subscript

FIG. 2. The location of the 2/3 resonance in {p, e, z−} pa-
rameter space. The arch-shape, typical for all resonances at
fixed spin, depends weakly on eccentricity. A maximum value
of z2− = 1 is reached at p = ppolar ∼ p∗ = 10.8. For a given e,
the maximum (retrograde, right) and minimum (prograde,
left) values of p occur on the equatorial plane z− = 0.

FIG. 3. Spin dependence for the 2/3 resonance with fixed
e = 0.5. The maximum arch width occurs at a = 1. As
a → 0, the arch pinches off to a line at p = ppolar.

identifies sgn(aLz) = ±1. As z− decreases the distance
(p− − p+) monotonically increases to its maximum value
on the equatorial plane.

The weak dependence of a resonance’s basic features on
eccentrity motivates studying its characteristics at fixed
e as a function of a and {p, z−}, as shown in Fig. 3 for the
2/3 resonance with e = 0.5. We see that the arch-width
exhibits a strong spin dependence, its inverted ′U ′ pro-
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FIG. 4. The location of low-order resonances (m ≤ 7) for
e = z− = 0 as a function of a and p. For a = 0 the left
leaning prograde (blue) and right-leaning retrograde (copper)
branches are degenerate at p = p∗. Each vertex is labeled
by n/m and darker colors indicate lower order resonances.

file pinches off to a single column ′I ′ profile at p = ppolar
when a → 0. The resonances become independent of
inclination since ωθ degenerates to ωφ. As the spin in-
creases the opening angle of the arch increases to a max-
imum arch-width for a = 1. The result is a ′V ′-shaped
footprint in the {p, a} plane. As inclination increases,
the prograde and retrograde branches of the arch ap-
proach ppolar and the ′V ′ narrows from its largest opening
angle for z− = 0 to a line for z− = 1.

For nearly circular equatorial orbits we obtain an ex-
act analytic solution for the ′V ′ profile [21] which allows
us to benchmark the resonance locations for any spin be-
cause of the ′U ′ profile’s weak eccentricity dependence.
When e = z− = 0, Eq. (1) is equivalent to [21]:

[

p(p− p∗)− a2(p∗ − 3)
]2 − 4a2p(p∗ − 2)2 = 0. (4)

where p∗ specifies the resonance via

p∗ =
6

1− (n/m)2
. (5)

For non-spinning black-holes, p = p∗ is a solution to
Eq. (4) and determines the position of the ′I ′ column
in the ′U ′ −′ I ′ transition in the circular limit. The value
of p∗ sets the general mean radius in physical space about
which all the interesting features associated with the n/m
resonance occur. Numerical values of p∗ for several low-
order resonances are given in Table. I. For spinning
black-holes, the largest two roots of Eq. (4) yield the ′V ′

profile on the equatorial plane (see Fig. 4). The maxi-
mum splitting of the retrograde and prograde branches
occurs when a = 1 with p± = p∗ − 1 ∓ 2

√
p∗ − 2 from

Eq. (4). For small spin, the series expansion

p∓ = p∗ ± 2a(p∗ − 2)√
p∗

− a2
(

p∗2 − 5p∗ + 8
)

p∗2
+O

(

a3
)

(6)

Res. Location Period T Galactic center: SgrA*

n/m p∗
[

GM/c2
] [

GM/c3
]

p∗ [µas] T [min] f [10−4Hz]

ISCO 6 92.3 30.6 32.7 5.10
1/2 8 142.1 40.9 50.3 3.31
1/3 6.8 110.2 34.5 39.0 4.27
2/3 10.8 223.0 55.2 78.9 2.11
1/4 6.4 101.7 32.7 36.0 4.63
3/4 13.7 319.1 70.1 112.9 1.48
1/5 6.3 98.2 31.9 34.7 4.80
2/5 7.1 119.9 36.5 42.4 3.93
3/5 9.4 180.4 47.9 63.8 2.61
4/5 16.7 427.5 85.1 151.3 1.10

TABLE I. Time and lengthscales associated with low-order
resonances. The values are for the e = a = z− = 0 ver-
texes seen in Fig. 4, both in dimensionless and physical units
for MSgrA∗ ∼ 4.3 × 106M⊙. Here p∗ = 6/[1 − (n/m)2] and

T = 2πp∗3/2.

is useful for making astrophysical estimates. The eccen-
tricity dependence of the ′U ′ profile for a → 0 is

p

p∗
= 1 +

e2

4(p∗ − 6)
− e4(4p∗ − 17)

64(p∗ − 6)3
+O(e6). (7)

Observe that as the resonant surfaces approach the in-
nermost stable circular orbit (p = 6) the effects of eccen-
tricity become increasingly important.
Astrophysical implications. Long-term monitoring of

time of arrival signals from a pulsar with orbital period of
a few months with the Square Kilometer Array could de-
termine the mass, spin and quadrupole moment of SgrA*
to a precision of . 10−2, providing a promising prospect
for a definitive test of the no-hair theorems [22]. A corol-
lary of the results in this paper is that orbits with periods
of order months are sufficiently far from the low-order
resonances that the KAM theorem guarantees the region
to be effectively free of stochastic motion. Tracking the
trajectory of a pulsar in the region 50Rs < r < 1000Rs

should build up an accurate map of the central object’s
gravitational potential and frequency drifts can be com-
puted perturbatively using averaging methods as in [23].
From Table I we observe that future gravitational

wave detectors sensitive to ∼ 10−4 − 10−1Hz will directly
probe resonant dynamics , cf. also [24]. This is an excit-
ing possibility but it underscores the necessity of carefully
modeling and incorporating resonant effects in the search
templates. If the central object is a non-Kerr black-hole
the possible onset of geodesic chaos will occur first in
these regions and complicate the analysis. Further nu-
merical investigation to quantify these effects for all E
and Lz is required.
Resonances can have either a capturing or a destabi-

lizing effect on particles that enter their region of influ-
ence [25]. The angular dependence of quadrupole pertu-
bation will preferentially excite the 2/3 resonance which
has been shown in at least one exploration to have a cap-
turing effect [21, 26].
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For particles that are light enough, entering a reso-
nance zone can strongly modify the orbital evolution and
even temporarily lock the frequencies in resonance. If a
particle becomes captured by a resonance its orbital pa-
rameters are expected to change within the resonant sur-
face, and for generic conservative perturbations gravita-
tional radiation should cause the orbit to evolve to a lower
energy state. In Fig. 5 we show the orbital energy and
azimuthal angular momentum associated with the reso-
nance surface depicted in {p, e, z−} space in Fig. 2. The
lowest orbital energy state for the given resonance occurs
in the lower right-hand corner of Fig. 5 corresponding
to prograde circular equatorial orbits. The migration of
resonantly captured particles towards circular equatorial
configurations could result in a cohesive resonant struc-
ture which leaves an imprint of density inhomogeneities
on any thin disk surrounding a black-hole similar to that
imprinted on Saturn’s rings [27, 28]. Dissipation due to
gravitational radiation dynamically alters the resonance
structures [29, 30]. If a trapped overdensity becomes suf-
ficiently large for the radiation reaction force to domi-
nate over the resonance’s trapping potential the ring will
break, depositing material that may accumulate on the
next resonance band. Any radiation emitted in the pro-
cess is likely to be modulated with the characteristic fre-
quencies associated with the resonance bands. The X-ray
spectrum of a black-hole candidate shows QPOs at pairs
of frequencies in a 3:5 ratio in addition to the 2:3 ratio
observed in other systems [17]. Observing a 3:5 frequency
ratio is unexpected; from a dynamical systems perspec-
tive, the 3:4 resonance should dominate. The assumption
that orbital resonances are a key ingredient in explaining
the QPO emission in this case provides an explanation of
the unusual occurrance of the 3/5 resonance. In Table I
and Fig. 4 we observe that the 3/5 resonance occurs just
inside the 2/3 resonance for all spin values and conse-
quently matter from a disruption at the 2/3 resonance
could collide with even a tenuous over-density of mat-
ter at the 3/5 resonance location and stimulate photon
emission.

The results presented in this paper may also provide a
robust method of determining the black-hole’s spin given
observational evidence from more than one resonance.
Recent monitoring of SgrA* with the 1.3mm VLBI
showed time-variable structures on scales ∼ 4Rs [16, 31].
The physical origin of this structure is not yet clear, but
the lengthscale is similar to that of the low-order reso-
nances given in Table I. Suppose now that the origin
of the structure at ∼ 4RS = 8M is due to the 2/3 res-
onance that is displaced from its non-spinning position,
since on astrophysical grounds the 2/3 resonance is likely
to have the greatest probability of being directly observ-
able [21]. Using Eq. (6), the prograde spin displacement
is p+ = 10.8−5.36a, thus the observed structure suggests
SgrA* has spin a = 0.5. The plausibility of identifying
this structure with the 2/3 resonance could be confirmed
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large asymmetry across the Lz = 0 line (z− = 1 in Fig. 2)
is as result of the high spin. The sharp cusp for Lz > 0
corresponds to the prograde e = z− = 0 point on the arch,
the lower corner point for Lz < 0 to the arch’s retrograde
e = z− = 0 point, and the E = 1 line to e = 1.

if characteristic timescales of slightly less than an hour
are associated with the variability and a 2:3 ratio in ob-
served frequencies is discovered. Note that once the spin
is determined Eq. (6) predicts the location of the other
resonances. As the resolution of the VLBI measurements
increases an observation of further resonances could pro-
vide an independent check on the above spin determi-
nation and if the results are found to be consistent, a
vindication of the assumption that the observed effects
are of orbital origin.
Conclusion. We have explored the basic properties

of resonant surfaces associated with radial and longi-
tudinal motion around a Kerr black-hole and provided
a few simple expressions to quantify resonant effects in
astrophysical systems. We have suggested a resonance-
based method for determining black-hole spins in systems
where the orbital dynamics dominate over other physics.
Observations of QPOs, gravitational wave emission from
resonant transits and radio maps of SgrA* at event hori-
zon scales could in the near future provide a powerful
observational toolkit for probing resonance phenomena.
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