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It is well known that the ground states of a Fermi liquid with and without a single Kondo
impurity have an overlap which decays as a power law of the system size, expressing the Anderson
orthogonality catastrophe. Ground states with two different values of the Kondo couplings have,
however, a finite overlap in the thermodynamic limit. This overlap, which plays an important role
in quantum quenches for impurity systems, is a universal function of the ratio of the corresponding
Kondo temperatures, which is not accessible using perturbation theory nor the Bethe ansatz. Using
a strategy based on the integrable structure of the corresponding quantum field theory, we propose
an exact formula for this overlap, which we check against extensive density matrix renormalization
group calculations.

PACS numbers: 72.15.Qm, 74.40.Gh, 05.70.Ln

Introduction. The Anderson orthogonality catastro-
phe (AOC) is one of the cornerstones of modern many
body physics. In its simplest formulation, this “catas-
trophe” states that the ground states of two Fermi seas
with different local scattering potentials become (if the
orthogonality exponent is non zero), orthogonal in the
thermodynamic limit. This fact has many important
consequences, and is at the root of the physics of Ma-
han excitons [1], the Fermi edge singularity in absorption
spectra [2], the non linear IV characteristics in quantum
dots, or the Kondo effect [3] in magnetic alloys. More
recently, AOC has played a central role in understanding
the post quench dynamics induced by optical absorption
in quantum dots tunnel-coupled to Fermi seas [4, 5].

The simplest manifestation of AOC occurs in the case
of a free Fermi sea involving a single channel of non inter-
acting electrons that experience two different local scat-
tering potentials. If the corresponding phase shifts at the

Fermi energy are δ
(1)
F , δ

(2)
F , a simple argument [6] shows

that the scalar product of the ground states vanishes as

〈Ω2 |Ω1 〉 ∝ N−(δ
(1)
F −δ

(2)
F )2/2π2

, (1)

where N is the total number of electrons. AOC occurs as
well in interacting systems. In the k-channel Kondo prob-
lem for instance, it is known that the scalar product of
the system with and without a Kondo impurity behaves
as 〈Ω(J) |Ω(J = 0) 〉 ∝ N−dK where [7] dK = 3

4(k+2)

and J is the (antiferromagnetic) Kondo coupling. The
simplest one-channel case, to which we will restrict in
this Letter, corresponds then to dK = 1

4 . In this case,
the orthogonality of the ground states expresses the fact
that at very low energy, spin up and spin down electrons
see a phase shift of 0 (resp. π2 ) with zero (resp. non zero)
Kondo coupling. An easy generalization of this argument

gives the exponent in the anisotropic Kondo case as well:

in the Toulouse limit in particular, d
(Tou)
K = 1

8 . No such
simple Fermi liquid calculation exists for k > 1, and so-
phisticated techniques have to be used to calculate the
overlap, such as integrability or conformal invariance. In
the latter set-up, the orthogonality exponent dK is inter-
preted as the scaling dimension of a boundary condition
changing operator [7]. Note that such exponents are di-
rectly related to the power law tail in the so-called work
distribution [8, 9] for quenches when a coupling is sud-
denly turned on, such as those studied in Refs. [4, 5] in
the Kondo case.

The ground state overlap exemplifies the non pertur-
bative quantities occurring in quantum impurity prob-
lems. An interesting variant is provided by the overlap
〈Ω2 |Ω1 〉 between ground states corresponding to two
different non-vanishing Kondo couplings J (1), J (2). This
overlap is not expected to vanish when both J (1), J (2) 6=
0, even in the thermodynamic limit. This is because, for
any non zero Kondo coupling, fermions at very low en-
ergy now see the same phase shift of π

2 . Nevertheless,
this overlap is non trivial, even in the non interacting
Toulouse limit, because it is determined by the behavior
of the whole Fermi sea, and not just what happens at
the Fermi energy. This overlap is also non perturbative:
any attempt to calculate it by expanding in J (1), J (2)

is plagued by infrared divergences precisely because of
the AOC. Overlaps such as 〈Ω2 |Ω1 〉 arise in quantum
quenches where one suddenly changes the Kondo cou-
pling J (1) 7→ J (2). The system then has a finite probabil-
ity of remaining in the ground state at large times, which
translates into a delta function in the corresponding work
distribution [8]: this probability is precisely the square
modulus P17→2 = |〈Ω2 |Ω1 〉|2, and it could be measured
in optical absorption experiments realizing such quantum
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quenches [4, 5].
Now, the Kondo problem exhibits universal proper-

ties at energy scales much smaller than the bandwidth
D. In this limit, physical quantities depend only on the
temperature, the magnetic field, and a crossover scale
which encodes the Kondo coupling J (see their precise
relationship below) – the Kondo temperature TK . Dif-
ferent (proportional) definitions of TK exist, but this will

not matter for us. Indeed, provided T
(1)
K , T

(2)
K � D, scal-

ing arguments show that the overlap becomes a universal
function of the ratio

〈Ω2 |Ω1 〉 = F
(
T

(1)
K /T

(2)
K

)
= F

(
T

(2)
K /T

(1)
K

)
. (2)

In this Letter, we obtain an exact formula for this quan-
tity, which we also check with extensive Density Matrix
Renormalization Group (DMRG) calculations.

Anisotropic Kondo model. The anisotropic Kondo
problem is initially formulated as a three dimensional
problem of non interacting fermions coupled to a local
magnetic impurity. After a spherical waves decomposi-
tion, only the s-channel interacts with the impurity, and
the problem can be transformed into one dimensional
gapless fermions on the half line (the radial coordinate)
coupled to a spin at the origin. “Unfolding” the half line
one obtains a problem of chiral fermions with

H = −i vF
∑
α=↑,↓

∫ ∞
−∞

dxψ†α∂xψα (3)

+ J
(
j+(0)σ− + j−(0)σ+

)
+ Jzj

z(0)σz ,

where the spin currents are j+ = ψ†↑ψ↓, j
− = ψ†↓ψ↑, j

z =

ψ†↑ψ↑ − ψ†↓ψ↓. We bosonize the fermionic fields ψσ ∼
ei
√
4πφσ [10], which allows us to separate charge and spin

modes φc/s = (φ↑ ± φ↓)/
√

2. The charge boson decou-
ples, and the interacting part involves only the spin boson
φ = φs. After a canonical transformation, H → U †HU
with U = exp(iJzφ(0)σz), one can then rewrite the
Hamiltonian as

H =

∫ ∞
−∞

dx (∂xφ)2 + J
(

eiβφ(0)σ− + e−iβφ(0)σ+
)
, (4)

with β =
√

8π − 2Jz and the equal time commutation
relations [φ(x), φ(x′)] = i

4 sign (x − x′). The scaling di-

mension of the perturbation is β2

8π =
(

1− Jz√
2π

)2
≡ ξ

ξ+1

where the last equality defines the coupling constant
ξ. The Kondo temperature in this framework varies as
TK ∝ Jξ+1.
Perturbative results. It is first natural to try to evalu-

ate the universal function (2) using perturbation theory.
To this end, we fold the chiral problem (4) to obtain a
non-chiral boson on the half line (−∞, 0], scattering off
the spin impurity at x = 0. We then map this (1 + 1)D
quantum impurity system onto a 2D classical statisti-
cal mechanics problem in the half-plane, critical in the

r = 0

 ",#(r)

c = 1 CFT⌧
�s =

�" � �#p
2

T
(1)
K

T
(1)
K

T
(2)
K

FIG. 1: The overlap |〈Ω2 |Ω1 〉| can be extracted from the par-
tition function of the system with the insertion of a Kondo
impurity and two different values of the coupling. In this
picture, the boundary condition corresponds to the spin im-
purity while the bulk describes a critical statistical mechanics
problem associated with the spin mode φs.

bulk (corresponding to the c = 1 free boson theory),
with the impurity now acting as a boundary condition
(see Fig. 1). We then calculate the partition function
Z
(
J (1), J (2)

)
of a half-infinite system with boundary con-

dition corresponding to the Kondo temperature T
(1)
K ev-

erywhere except on a part of the boundary of length τ

where the boundary field is taken to correspond to T
(2)
K .

It gives a term linear in imaginary time (corresponding to
a boundary free energy contribution), a term exponential
in imaginary time (corresponding to excited states prop-
agating along the boundary), and a term of order one
which can be seen to be |〈Ω2 |Ω1 〉|2 in the Hamiltonian
formalism.

Expanding the overlap |〈Ω2 |Ω1 〉|2 in J (1)− J (2) from
the ratio Z(J (1), J (2))/Z(J (1), J (1)) is extremely com-
plicated, since the two-point function of the boundary
perturbation in (4) is not known in general. At the
Toulouse point (ξ = 1), however, the perturbation can
be refermionized, so the spin-spin propagator at finite
value of J is easily found, and expanding the partition
function yields [11]

|〈Ω2 |Ω1 〉|ξ=1 = 1− α2
12

8π2
+O(α4

12) , (5)

where eα12 = T
(2)
K /T

(1)
K . Even for this non-interacting

case, going beyond this first order expansion becomes
quickly involved, and capturing the full behavior of the
function (2) seems hopeless.
Semi-classical analysis. The overlap can also be cal-

culated perturbatively in the semiclassical limit, where

ξ ' β2

8π � 1. In this case, it is convenient to imple-
ment yet another canonical transformation, and bring
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the Hamiltonian into the form

H =
1

2

∫ 0

−∞
dx
(
(∂xΦ)2 + (∂tΦ)2

)
+ Jσx +

β

4
∂tΦ(0)σz.

(6)
Using perturbation theory in β, we now calculate the par-
tition function Z in imaginary time of a system with two
different values of J as shown in Fig. 1. The leading con-
tribution comes from the configuration where σx = −1
everywhere but between a pair of insertions, spaced by
τ , of the ∂tΦ(0)σz term. Discarding terms that depend
on τ and encode the non universal boundary free energy,
we find [11]

|〈Ω2 |Ω1 〉| = 1 +
ξ

2

(
1− α12

2
coth

α12

2

)
+O(ξ2) . (7)

Once again, going beyond this first order is extremely
involved, and there is, in particular, no chance to capture

the crossover between the two extreme behaviors, T
(1)
K ∼

T
(2)
K and T

(1)
K � T

(2)
K .

Exact results from integrability. For many other ques-
tions in the Kondo problem – such as the study of
thermodynamics properties [12, 13], correlation func-
tions [14], quantum quenches [15] or entanglement [16] –
non perturbative techniques have led to analytic expres-
sions in the crossover regions, when the physical scale of
interest (temperature, magnetic field, etc) is comparable
with TK . Although exact Bethe ansatz wave functions
are in principle known for different values of TK , overlaps
such as 〈Ω2 |Ω1 〉, have however proven, so far, impossi-
bly hard to calculate directly. We report here another
approach to the problem based on an axiomatic determi-
nation of the overlaps directly in the field theory limit.
This approach is similar in philosophy to the S-matrix
bootstrap from Ref. [17]. We give the relevant details
in the supplementary material, and move directly to the
main result.

We find that the overlap is given by

〈Ω2 |Ω1 〉 = (ξ + 1)
sinh α12

2(ξ+1)

sinh α12

2

gξ(α12) (8)

with

gξ(α) = exp

(∫ ∞
0

dt

t

sin2(αt/π)

sinh 2t cosh t

sinh tξ

sinh t(ξ + 1)

)
, (9)

where we recall that eα12 = T
(2)
K /T

(1)
K . See Fig. 2 for a

plot of this exact solution, illustrating the variation of
the overlap with the anisotropy, as well as the incredibly

large values of the ratio T
(2)
K /T

(1)
K necessary to bring this

overlap down to the 10−1 or less. It is worth mentioning
here that the function gξ(α12) coincides with properly
normalized matrix elements of the operators e±iβφ(0) σ∓:

〈Ω2 | e±iβφ(0) σ∓ |Ω1 〉√
〈Ω2|e−iβφ(0)σ+|Ω2〉〈Ω1|e+iβφ(0)σ−|Ω1〉

= gξ(α12) .

(10)
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FIG. 2: Theoretical result for the overlap for various

anisotropies as a function of the ratio T
(2)
K /T

(1)
K . The isotropic

Kondo problem then corresponds to ξ =∞. Note the extreme
values on the x-axis.

An immediate check is to study the behavior at large

T
(2)
K /T

(1)
K , where we find

〈Ω2|Ω1〉 '


Cξ

(
T

(2)
K

T
(1)
K

)− ξ
4(ξ+1)

(ξ <∞)

C∞
(

log
T

(2)
K

T
(1)
K

) 3
4
(
T

(2)
K

T
(1)
K

)− 1
4

(ξ =∞)

(11)

for T
(2)
K � T

(1)
K . This is in agreement with the dimen-

sion of the boundary condition changing operator for
the anisotropic Kondo problem, dK = 1

4
ξ
ξ+1 . For the

isotropic Kondo case (ξ =∞) we recover the dimension,
dK = 1

4 , of the j = 1
2 SU(2) primary. Notice that, since

in eq. (8) we assume the conventional normalization con-
dition 〈Ω |Ω 〉 = 1, the constants in asymptotic formulae
(11) are universal amplitudes. Their expression can be
found in the supplementary material. Of course, one can
also verify that (8) is consistent with the perturbative
results (5) and (7).
Numerical results. We now turn to a detailed numer-

ical exploration of our result. There are various lattice
models where the overlap (8) can be measured. We have
focused on the XXZ chain with a weak boundary coupling

H =

N∑
i=0

ti
(
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

)
, (12)

where ti = 1 for i 6= 0 and t0 = J`. Standard bosoniza-
tion [18] shows that this Hamiltonian is equivalent, at
low energy, to (4) with the Kondo coupling J ∝ J` and
β2

8π = 1 − 1
π arccos ∆ [32]. From a numerical point of

view, the easiest case to check is of course the Toulouse
point where ∆ = 0, for which the overlap (2) can be ex-
pressed as a determinant of a matrix whose size scales
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FIG. 3: Numerical checks of the main result (8). Note that the comparison between numerical and field theory results does not
involve any free parameter. (a) Measures of the overlap in the free-fermion Toulouse case ξ = 1, modeled by a spinless non-
interacting resonant level, tunnel-coupled with parameter J` to two metallic reservoirs with N = 4096 sites each. The dashed
line is the analytical result, with TK ∝ J2

` . Inset: Finite size scaling. (b) DMRG results for the overlap in the interacting
case ξ = 1/3, modeled by an XXZ spin chain with anisotropy ∆ = −1/

√
2 and N sites, with an extra site at the edge

characterized by a weak link J`, corresponding to the impurity. The numerical results for N = 200, . . . , 800 are extrapolated

in the thermodynamic limit N →∞. The red line is the analytical result, with TK ∝ J4/3
` , and the black symbols correspond

to the extrapolation J` → 0. Inset: Examples of finite size extrapolations for fixed J` ≡ J(1)
` and different values of J

(2)
` .

linearly with the number of sites (see e.g. [19]). Results
are presented in Fig. 3(a). While the agreement with the
theoretical value is clearly good – note that there is no
free parameter in (8) – several aspects are important to
notice. First, the overlap varies very slowly with the ra-
tio of Kondo temperatures. This requires exploring ratios

T
(2)
K /T

(1)
K of the order of 102 or more. Since the analyti-

cal result is only true in the scaling limit where J` � 1,
this forces us to explore extremely small values of the
bare coupling. For these values, the Kondo screening
length 1/TK ∝ (J`)

−2 is in turn very large. To avoid
finite size effects – which seem quite important for the
determination of the overlaps – we finally have to study
larger systems than one would have expected – of the or-
der of 104 sites, forbidding us in particular from testing
the region where the overlap becomes very small.

The interacting case requires use of the DMRG tech-
nique [20]. We use here a two-site version in the matrix
product state (MPS) language [21]. In this case, we have
been limited to chains of about 800 sites, for which fi-
nite size effects in the scaling limit remain unfortunately
important. In order to obtain usable results, we have
had to perform a double extrapolation. For finite, small
J` we have first extrapolated results for different sizes to
N = ∞. These results are represented in Fig. 3(b) for
ξ = 1/3. We have then performed a second extrapola-
tion for different values of J` to J` = 0, represented by
the black symbols in the figure. The result of these ex-
trapolations is found to be consistent with the analytical
result (8). Note that in principle, one would also need

to extrapolate the bond dimension χ of the variational
MPS used in DMRG to infinity, but we find that keep-
ing χ ∼ 100 − 300 was enough for the finite χ effects to
be negligible compared with the more important finite N
and finite J` effects.
Discussion. It is clear a posteriori – in view of its

extremely slow variation with the ratio of Kondo tem-
peratures – that the overlap in the crossover would be
impossible to obtain perturbatively. It is also difficult
to measure it numerically. The slow variation quantifies
the weak dependency of the Kondo ground state on the
impurity coupling. It would be interesting to obtain a
more qualitative understanding of this effect in terms of
the screening cloud. Technically, the exact formula for
the ground states overlap is the building stone for the
calculation of general overlaps between quantum impu-
rity systems with different boundary conditions. Exact
calculations of Loschmidt echoes and work distributions
in quantum quenches then follow using more traditional
techniques [22], which will be discussed elsewhere.

Despite their importance in the context of quantum
information, the thermodynamic limit of similar ground
state overlaps (fidelities) remain extremely difficult to ac-
cess exactly – even for non-interacting systems – and are
often non-perturbative in the relevant expansion param-
eters. Our result opens the door to the calculation of
such overlaps in integrable systems.
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[21] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[22] F. Lesage and H. Saleur, Phys. Rev. Lett. 80, 4370

(1998).
[23] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov,

Comm. Math. Phys. 177 (2), 381 (1996).
[24] S. Lukyanov, Phys. Lett. B 325, 409 (1994).
[25] P. Fendley, H. Saleur an N.P. Werner, Nucl. Phys B 470,

577 (1994).
[26] S. Lukyanov, Comm. Math. Phys. 167, 183 (1995).
[27] P. Fendley, Phys. Rev. Lett. 71, 2485 (1993).
[28] F. Smirnov, Form factors in completely integrable mod-

els of quantum field theory (World Scientific, Singapore,
1992).

[29] A. Leclair, F. Lesage and H. Saleur, Phys. Rev. B 54,
13597 (1996).

[30] S. Ghoshal and A.B. Zamolodchikov, Int. J. Mod. Phys.
A 9, 3841 (1994).

[31] B.M. McCoy, Phys. Rev. 188 (2), 1014 (1969).
[32] Note that the interaction term J`∆S

z
0S

z
1 on the weak link

is marginal, but can nevertheless be ignored in (4) since
it appears with amplitude J` → 0 in the scaling limit.


