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We point out certain symmetry induced constraints on topological order in Mott Insulators (quantum mag-
nets with an odd number of spin 1

2
per unit cell). We show, for example, that the double semion topologi-

cal order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the
Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully sym-
metric gapped Mott insulator must be topologically ordered, but is silent on which topological order is permitted.
An application of our result is the Kagome lattice quantum antiferromagnet where recent numerical calculations
of entanglement entropy indicate a ground state compatible with either toric code or double-semion topological
order. Our result rules out the latter possibility.

Distinctions between phases of matter were traditionally
based on symmetry considerations, since spontaneous sym-
metry breaking leads to distinct phases. However, with the
discovery of the fractional Quantum Hall effects (FQHE), the
role of topology in defining phases of matter was emphasized.
Topologically ordered states in two dimensions (2D), such as
FQHE phases and gapped quantum spin liquids, contain ex-
citations with unusual (anyonic) statistics. Symmetries still
have an important role to play in these systems, as the anyon
excitations may carry fractional quantum numbers such as the
fractional charge of Laughlin quasiparticles. The interplay of
topology and symmetry leads to new and fundamental distinc-
tions between states of matter. [1]

Charge conservation also allows us to define the filling ν
of FQHE states. At fractional filling factors p/q, a featureless
(translation invariant) state must have a non-trivial excitation
of charge 1/q. This is the simplest example of a constraint
between the microscopic details (the fractional filling) and
the emergent excitations (the fractional charge). Presumably
this constraint helps stabilize the FQHE states over competing
conventional orders which must break translation symmetry.

Gapped quantum spin liquids are close analogs of FQHE
states. They also feature emergent anyon excitations and frac-
tionalization of symmetry quantum numbers, although usually
in the presence of time reversal symmetry. They are proposed
to occur in two dimensional insulating quantum magnets,
where frustration prevents the formation of a conventional or-
dered state[2]. Although a clearcut experimental example of a
gapped spin liquid is currently lacking, numerical calculations
have made a strong case for their existence in the S = 1

2 anti-
ferromagnet on the Kagome lattice[3, 4]. Experiments on the
Kagome lattice material Herbertsmithite also observe a spin
disordered state[5, 6]. Although bulk measurements do not
observe an energy gap, this distinction has been attributed to
disorder [7] or non-Heisenberg magnetic interactions[8–10],
although other ground states have also been proposed[11].

The analog of fractional filling in quantum magnets is the
Mott insulator, defined as an insulator with an odd number
of S = 1

2 moments per unit cell. In 1D, according to the
Lieb-Schultz-Mattis argument, a S = 1

2 antiferromagnetic
chain must ether be gapless or double the unit cell[12]. In 2D
an analog of this result, the Hastings-Oshikawa-Lieb-Schultz-

Mattis (HOLSM) [13–17], states that at zero temperature, a
Mott insulator must either be gapless, break spin / transla-
tion symmetry, or have emergent excitations with nontrivial
mutual statistics. The last condition is not available in 1D,
and corresponds to a topological quantum spin liquid phase,
which is gapped and preserves all symmetries. Hence finding
a symmetric, gapped state is indirect, but strong, evidence for
a quantum spin liquid.

An intuitive way of visualizing this result is to think of a
S = 1

2 in terms of hard core bosons, where spin up is an empty
site and spin down is a site occupied by a boson. A Mott
insulator has a fractional (half odd integer) filling of bosons
per unit cell. To obtain a featureless insulator, the bosons
must fractionalize into half charged entities, which can then
be uniformly assigned to lattice sites. When viewed directly
from the spin language, this implies that to obtain a symmet-
ric ground state, one needs S = 1

2 excitations in the magnet
which can screen the background spin in the unit cell. No
local excitation (like a spin flip) carries S = 1

2 , so these exci-
tations must be topological.

Clearly this will place conditions on the types of topologi-
cal order compatible with a symmetric state. The extensions
of the Lieb-Schultz-Mattis theorem are silent on the detailed
form of the topological order. Here we will show that one very
natural seeming type of topological order, the double-semion
state, is incompatible with a time reversal symmetric Mott in-
sulator. Our method of proof can be readily generalized to
other kinds of topological order and different symmetries. We
leave that to future work.

This observation has an important consequence for inter-
preting recent numerical results on the Kagome antiferromag-
net. Numerical calculations using the Density Matrix Renor-
malization Group have found a gapped phase with a feature-
less ground state i.e. one that preserves the spin, lattice and
time reversal symmetry[3]. As the Kagome model is a Mott
insulator with three S = 1

2 per unit cell, this implies a quan-
tum spin liquid phase. Subsequently, the topological entan-
glement entropy was calculated in this ground state and was
found to be consistent with γ = ln 2,[4, 18] the expected value
for a spin liquid with Z2 toric code topological order. Certain
other topological orders are also compatible with this value
but they break time reversal symmetry. The only other plau-
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sible option is the double-semion theory, which is a twisted
Z2 topological order [19, 20]. Excitations in this phase are a
semion, antisemion and a boson with mutual semionic statis-
tics with the first two particles. Our argument demonstrates
that double-semion topological order is incompatible with a
fully symmetric Mott insulator. Given that the numerical re-
sults on the Kagome lattice antiferromagnet point to a sym-
metric ground state, we can exclude this topological order.
The only remaining possibility which is consistent with all
numerical results is the Z2 toric code topological order.

This paper is organized as follows. First, we provide a sum-
mary of the central result and its application to the double-
semion theory. We then give a more rigorous argument
based on the action of symmetries on the minimally entan-
gled ground states of an infinite cylinder. Finally, we discuss
some numerical studies of ground states with double semion
topological order in a Kagome Mott insulator, which provide a
concrete illustration of the constraints described in this paper.

We will argue that in the presence of translation symmetry,
there is always an Abelian anyon a in the system which 1) is
not transformed into another anyon type under the symmetries
and 2) can ‘screen’ the charge in the unit cell, meaning that a
transforms under the symmetries in a manner that can com-
bine with a missing unit cell in order to form a neutral object.
One may visualize the system as a lattice of a-particles which
screen the fractional charge of the unit cell. We then show that
there are no anyons in the double-semion theory which satisfy
criteria 1, 2), completing a ‘no-go’ argument.

There is an exception to our argument if translations per-
mute the anyon types. This is impossible for the double-
semion theory, so we defer all discussion of this case to the
Supplementary Materials. [21]

The properties of a topological phase with respect to trans-
lation [22–27] can be captured by supposing there is an
Abelian anyon of type ‘a’ sitting in each unit cell, generat-
ing a constant density of topological flux a. The anyons then
experience magnetic flux owing to their mutual statistics with
the anyon a. To be precise, [21] take an anyon b around a path
enclosing one unit cell, accumulating a Berry phase

ηb =
(T−1y T−1x TyTx)b

(T−1y TyT
−1
x Tx)b

= Sba/Sb1, (1)

where x, y denote a basis for the Bravais lattice. The denom-
inator has been included so that if the state is translationally
symmetric, the non-universal components of each Tx/y can-
cel, resulting in a robust phase. If there is constant topological
flux a, then b has enclosed one a-flux, accumulating mutual
statistics Sba/Sb1 where S is the topological S-matrix. On
physical grounds, these phases should be consistent with fu-
sion, ηbηc = ηbc (in a non-Abelian phase, all fusion channels
for bc should share the same η). Setting ηb = Sba/Sb1 for
some Abelian a is in fact the unique choice consistent with fu-
sion, so measuring each ηb uniquely determines (and defines)
the flux a.

For example, consider the FQHE at ν = 1/m; the anyons
are labeled by their charge Qb = eb/m. When an anyon b en-

circles one magnetic unit cell it acquires an Aharanov-Bohm

phase ηb = e2πi
b
m . Since Sba = e2πiba/m/

√
m, we see that

the background topological flux is a = 1, the Qa = e/m
quasi-particle.

In the presence of other symmetries, there are two con-
straints on the allowed background flux a. First (1), note that
in general applying a global symmetry G can turn one anyon
type into another, G : b→ Gb. The flux a must be left invari-
ant under any symmetry G which commutes with the transla-
tions Tx/y , otherwise the phases ηb will break the symmetry
G.

Second (2), we will later prove that the anyon a transforms
under the symmetries so as to screen the microscopic unit cell.
For concreteness we discuss three cases, each of which is ap-
plicable to the Mott insulator: i) if there is half-integral spin
per unit cell, a must have half-integral spin (it is a ‘spinon’);
ii) if there is fractional U(1) charge n/m per unit cell, then a
must have fractional charge n/m (as for the Laughlin quasi-
particles); and iii) if each unit cell transforms as a Kramer’s
doublet T 2 = −1, then a must transform as a Kramer’s dou-
blet.

Cases i - iii imply there must be non-trivial topological or-
der: since the charges assigned to a are fractional, they cannot
be carried by any local (trivial) excitation, which is the con-
tent of the HOLSM theorem. But from (1) we have learned
something in addition to HOLSM: a cannot be permuted by
the symmetries. This small addition is sufficient to rule out
the double-semion theory.

The double-semion topological order can be viewed as a
topological phase of bosons which is comprised of a pair of
opposite m = ±2 bosonic Laughlin states (U(1)2×U(1)−2).
It can be described by a two component Abelian Chern Si-
mons theory L = 2

4π ε
µνλ(a1µ∂νa1λ−a2µ∂νa2λ) and has the

same quantum dimension and ground state degeneracy on the
torus (4) as the Z2 toric code topological order. The quasipar-
ticle content is {1, s}×{1, s′} = {1, s, s′, b} where s (s′) is
the semion (antisemion) and b = ss′ is a boson, with mutual
semionic statistics with the first two particles.

The topological spins of the semions are θs/s′ = ±i. Under
time reversal, the topological spin is conjugated, θT s = θ∗s , so
time reversal exchanges the semions: T s = s′. This con-
strains the allowed realizations of SO(3), U(1) and time rever-
sal symmetry in a way we show is incompatible with scenar-
ios i-iii). In all cases we assume that both time reversal and
translation symmetry are respected.

i) SO(3). There are two ways to realize SO(3) in the
double-semion model. First, we can assign trivial (integral)
spin to each anyon. But for case i) we need at least one
anyon to transform as S = 1

2 , and the unique possibility is
that {1, b} have integral spin while {s, s′} have half-integral
spin. Clearly s, s′ must have the same spin, as they are related
by time reversal. Since bs = s′, b cannot have half-integral
spin in order to preserve consistency with fusion. There is no
anyon a which carries S = 1

2 and isn’t permuted by T .
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ii) U(1). Since b2 = s2 = s′
2

= 1, fusion requires that
each anyon either has U(1) charge Q of 0 or q

2 (modulo the
unit of charge q in this theory). Fusion and time-reversal re-
quire Qs = Qs′ = Qs + Qb, so Qb = 0 is neutral. There
are two possibilities: Qs/s′ = 0, or Qs/s′ = q

2 . In either
case, there is no anyon a which carries Q = n

mq and is not
permuted by T .

iii) Time reversal. Under T the two semions are ex-
changed, T : s ↔ s′, while the boson b is unchanged. Fur-
thermore, the boson b must be assigned T 2 = 1 because it
is composed of a pair of particles (s, s′) with trivial mutual
statistics which are transformed into one another under time
reversal. Leaving a detailed argument to the Supplementary
Materials [21], intuitively when T 2 acts on b it is equivalent
to taking s around s′, which leads to unit phase i.e. T 2 = +1,
and hence no Kramers degeneracy. Again, there is no anyon
a which is a Kramer’s doublet.

To justify criteria 1, 2 we consider the action of braiding,
time reversal, and translation on the degenerate ground states
of an infinitely long cylinder. There is a special ‘minimally
entangled’ (ME) basis [28] for the degenerate ground states
in which each of these operations permutes the basis states.
These permutations are subject to certain conditions which
impose the two constraints 1, 2 on the background anyon flux
a. We restrict to Abelian theories to simplify the discussion,
but the result is general.

A topological theory with m anyon types has m degenerate
ground states on an infinitely long cylinder[29]. To construct
the ME basis, [28] define periodic coordinate y and infinite
coordinate x. Let Fay denote the adiabatic process of creating
a pair of anyons b/b̄ from the vacuum, taking b around the
cylinder in the +y direction, and reannihilating the pair, as
illustrated in Fig. 1 [30, 31]. Fbx is a similar process in which
a pair b/b̄ is dragged out to x = ±∞. The Fbx/y are a set
of unitary matrices acting on the ground state manifold. Fbx
threads topological flux b through the cylinder, while the Fby
are like Wilson loops which detect the topological flux. Their
commutation relations are determined by the mutual statistics
Sbc/Sb1 and the fusion group Nd

bc:

FbyFcx =
Sbc
Sb1
FcxFby :

Fbx/yF
c
x/y ∝ F

b·c
x/y, b · c =

∑
d

Nd
bcd (Abelian fusion)

(2)

The ME basis simultaneously diagonalizes each Fby . [28,
32, 33] The ME basis has definite topological flux threading
the cylinder, reducing the entanglement entropy between the
two regions x < 0 and x > 0. In contrast, for the non-MES,
the Wilson loop - Wilson loop correlation functions generated
by Fby have long-range order along the length of the cylinder,
generating additional entanglement entropy ( they are long-
range ordered ‘cat states’ if we view the cylinder as a 1D sys-
tem). By choosing a basis which diagonalizes Fby , each basis
state is a local minima of the entanglement.

a) b)

FIG. 1. a) The adiabatic processes Fb
x/y . b) The 4 minimally entan-

gled basis states are represented as the node of a graph. The process
Fc

x, with c = 1, b, s, s′, permutes these basis state, illustrated with
labeled edges. The action of time reversal T is also a permutation of
the MES; the only permutation consistent with fusion acts as a mirror
reflection across the diagonal, since it must exchange T : s↔ s′

For Abelian b, the process Fbx permutes the MES in a man-
ner consistent with fusion. We represent this permutation as
a graph, shown in Fig. 1 for the double-semion theory. Each
node of the graph is an MES; nodes are connected by an edge
‘b’ if the two MES are related by Fbx.

Time-reversal or an onsite symmetry (such as spin rota-
tions) G must also permute the MES: these symmetries leave
the entanglement entropy invariant, so under G the MES re-
main local minima of the entanglement entropy. When G acts
on an anyon, it can also be transformed into some other anyon,
G : b → Gb. Since GFbyG−1 ∝ FGby while FbyFcy ∝ Fb·cy ,
there are constraints on the allowed permutations of the MES.

As an example, consider time-reversal T in the double-
semion model, where T leaves the anyons 1, b invariant, but
exchanges the semions, T : s ↔ s′. Referring to Fig. 1, we
see that the permutation T must act like a reflection across the
diagonal, exchanging s edges and s′.

Finally we consider translations Tx along the length of the
cylinder, taking an entanglement point of view on the LSM
theorem. Again, Tx can only permute the MES, because the
MES are the unique basis states which are not long-range
correlated along the length x of the cylinder, and Tx cannot
generate long-range correlations. In fact, Tx is equivalent to
threading topological flux FaLy

x , where a is the anyon in each
unit cell and Ly is the circumference of the cylinder, because
Tx transfers Ly of the a through the cylinder. The commuta-
tor Fby

−1
T−1x FbyTx is equivalent to an anyon b encircling an

annular region of 1 × Ly unit cells. As discussed, the result
is a robust phase ηLy

b . Using Eq.(1), ηb = Sba/Sb1, com-
bined with Eq. (2) and the non-degeneracy of braiding, we
find Tx ∝ Fa

Ly

x .

To understand the further constraints on the permutation Tx
(and hence on the special anyon a) we examine the entangle-
ment properties for bipartitions at different x. Let ρx be the
reduced density matrix for the system to the left of x (leaving
the dependence on the particular MES implicit). If the state
is symmetric (there is always at least one MES which is sym-
metric [21]), then under T or an SO(3) spin rotation R, ρx
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transforms as

T : ρx → UT ;xρ
∗
xU
†
T ;x, R : ρx → UR;xρxU

†
R;x (3)

where UT ;x, UR;x are unitary matrices. It is known that the U
are a projective representation of the symmetries. [34–36] For
T there are two possibilities,

UT ;xU
∗
T ;x = γx, γx = ±1 (4)

independent of whether the microscopic degrees of freedom
transform as T 2 = ±1. For rotations R, the UR;x can either
be decomposed into integral representations of SO(3), which
we denote by Sx = 1, of half-integral representation of SO(3),
which we denote Sx = −1.

We make use of the odd number of S = 1
2 per unit cell

by calculating the dependence of γx, Sx on the location of
the cut x. Consider a cylinder with odd, but arbitrarily large,
circumference, so that each ring of the cylinder transforms
as T 2 = −1 and with half-integral spin. Since the reduced
density matrices for ρx, ρx+1 differ by the addition of a single
ring, it is straightforward to prove [36] that

γx+1 = −γx, Sx+1 = −Sx. (5)

Intuitively, every time the entanglement cut passes a spin, the
entanglement invariants flip, since the spins transform with
γ = S = −1 themselves. However, the cuts at x, x + 1 are
related by the translation Tx, so the state must double the unit
cell - this is a version of the LSM theorem. A similar phe-
nomena occurs whenever the unit-cell transforms projectively
under a symmetry.[36] The case of U(1) at fractional filling is
somewhat distinct, but the conclusion equivalent [21].

Tying these strings together, we argued that Tx is a permu-
tation equivalent to threading some Abelian flux, Tx ∝ Fa

Ly

x .
For odd Ly , Tx flips the entanglement invariants, so a must
be non-trivial. When an anyon a crosses an entanglement cut
during the process Fax , the entanglement invariants γx/Sx flip
if and only if a transforms as T 2 = −1 / with half-integral
spin. More generally, we conclude that a must transform with
the same projective representation or U(1) fractional charge
as the unit cell; this is the precise meaning of criteria 2), that
a can ‘screen’ the charge of the unit cell. Criteria 1) follows
from TxT = T Tx.

Returning to the double-semion model, examining Fig.1
we see that the only non-trivial choice consistent with time-
reversal is Tx ∝ Fb

Ly

x . But the bosonic excitation must have
integral spin and T 2 = 1, so when a boson b passes an entan-
glement cut at x it does not flip the entanglement invariants
γx, Sx. But if Fbx leaves these invariants unchanged, while Tx
flips them, we arrive at a contradiction.

Several recent works have examined the possibility of
double-semion quantum spin liquids on lattices including the
Kagome model. These works were partially motivated by
numerical evidence that there is a chiral spin liquid adjacent
to the S = 1

2 Kagome Heisenberg anti-ferromagnetic phase,
with tentative evidence that the two phases may be related by a

continuous transition. [37–40] There is a natural scenario for
a continuous phase transition between a double-semion theory
and a chiral spin-liquid. [41]

These theoretical studies found exactly solvable quantum-
dimer models with double-semion topological order.[42–44]
In the dimer picture, these double-semion states preserve
translation, time reversal, and SO(3). But this is not a counter
example to our no-go argument, because the dimer picture
loses track of the S = 1

2 nature of the constituent spins.
In fact, Ref. 43 provides intriguing evidence for the no-

go argument. A dimer wavefunction can be translated into
a S = 1

2 wavefunction, but this requires choosing a particular
dimer reference configuration. While the reference configu-
ration breaks translation invariance, when this procedure is
applied to the RVB state with the topological order of the Z2

toric-code, the resulting state is translation invariant. How-
ever, when applied to the double-semion RVB, there is an ob-
servable doubling of the unit cell which could not be removed
within the variational space considered. In light of the no-go
argument it appears this is an intrinsic feature of the S = 1

2
Kagome model.

In conclusion, we have argued that symmetries enforce a
new type of constraint on the topological order of a Mott insu-
lator. Like Lieb-Schultz-Mattis and its extensions, this result
is a helpful ally in the hunt for spin liquids since local order
parameters cannot be used to distinguish between topological
orders.
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